MULTILEVEL PRECONDITIONERS FOR DISCONTINUOUS GALERKIN APPROXIMATIONS OF ELLIPTIC PROBLEMS WITH JUMP COEFFICIENTS By

In this article we develop and analyze two-level and multi-level methods for the family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with rough coefficients (exhibiting large jumps across interfaces in the domain). These methods are based on a decomposition of the DG finite element space that inherently hinges on the diffusion coefficient of the problem. Our analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes, and we establish both robustness with respect to the jump in the coefficient and near-optimality with respect to the mesh size. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods.

[1]  Bernardo Cockburn,et al.  Multigrid for an HDG method , 2013, IMA Journal of Numerical Analysis.

[2]  Blanca Ayuso de Dios,et al.  L2‐estimates for the DG IIPG‐0 scheme , 2012 .

[3]  Susanne C. Brenner,et al.  Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method , 2011, J. Sci. Comput..

[4]  Michael J. Holst,et al.  Local multilevel preconditioners for elliptic equations with jump coefficients on bisection grids , 2010, Comput. Vis. Sci..

[5]  Ralf Hartmann,et al.  Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method , 2009, SIAM J. Sci. Comput..

[6]  Blanca Ayuso de Dios,et al.  Uniformly Convergent Iterative Methods for Discontinuous Galerkin Discretizations , 2009, J. Sci. Comput..

[7]  Susanne C. Brenner,et al.  Multigrid methods for the symmetric interior penalty method on graded meshes , 2009, Numer. Linear Algebra Appl..

[8]  Benjamin Stamm,et al.  Low Order Discontinuous Galerkin Methods for Second Order Elliptic Problems , 2008, SIAM J. Numer. Anal..

[9]  Wolfgang Dahmen,et al.  Multilevel preconditioners for the interior penalty discontinuous Galerkin method II- Quantitative studies , 2008 .

[10]  Ludmil T. Zikatanov,et al.  Two‐sided bounds on the convergence rate of two‐level methods , 2008, Numer. Linear Algebra Appl..

[11]  Satyendra K. Tomar,et al.  A multilevel method for discontinuous Galerkin approximation of three‐dimensional anisotropic elliptic problems , 2008, Numer. Linear Algebra Appl..

[12]  Wolfgang Dahmen,et al.  A Multilevel Preconditioner for the Interior Penalty Discontinuous Galerkin Method , 2008, SIAM J. Numer. Anal..

[13]  Yunrong Zhu,et al.  Domain decomposition preconditioners for elliptic equations with jump coefficients , 2008, Numer. Linear Algebra Appl..

[14]  Satyendra K. Tomar,et al.  Multilevel Preconditioning of Two-dimensional Elliptic Problems Discretized by a Class of Discontinuous Galerkin Methods , 2008, SIAM J. Sci. Comput..

[15]  Jean-Luc Guermond,et al.  Discontinuous Galerkin Methods for Anisotropic Semidefinite Diffusion with Advection , 2008, SIAM J. Numer. Anal..

[16]  Jinchao Xu,et al.  New Estimates for the Rate of Convergence of the Method of Subspace Corrections , 2008 .

[17]  Paola F. Antonietti,et al.  Multiplicative Schwarz Methods for Discontinuous Galerkin Approximations ofElliptic Problems , 2007 .

[18]  Paola F. Antonietti,et al.  Two-Level Schwarz Preconditioners for Super Penalty Discontinuous Galerkin Methods , 2007 .

[19]  Susanne C. Brenner,et al.  A W-cycle algorithm for a weakly over-penalized interior penalty method , 2007 .

[20]  Juan Galvis,et al.  BDDC methods for discontinuous Galerkin discretization of elliptic problems , 2007, J. Complex..

[21]  I. Graham,et al.  Robust domain decomposition algorithms for multiscale PDEs , 2007 .

[22]  Ludmil T. Zikatanov,et al.  Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations , 2006, Numer. Linear Algebra Appl..

[23]  L. D. Marini,et al.  Stabilization mechanisms in discontinuous Galerkin finite element methods , 2006 .

[24]  Erik Burman,et al.  A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems , 2006, SIAM J. Numer. Anal..

[25]  S. C. Brenner,et al.  Convergence of Multigrid Algorithms for Interior Penalty Methods , 2005 .

[26]  Chao-Yang Wang,et al.  Fundamental Models for Fuel Cell Engineering , 2004 .

[27]  Chao-Yang Wang,et al.  Fundamental models for fuel cell engineering. , 2004, Chemical reviews.

[28]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[30]  Owe Axelsson,et al.  Iteration number for the conjugate gradient method , 2003, Math. Comput. Simul..

[31]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[32]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[33]  Xiaobing Feng,et al.  Two-Level Additive Schwarz Methods for a Discontinuous Galerkin Approximation of Second Order Elliptic Problems , 2001, SIAM J. Numer. Anal..

[34]  C. Vuik,et al.  On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..

[35]  Z. H. Wang,et al.  Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells , 2000 .

[36]  Tony F. Chan,et al.  An Energy-minimizing Interpolation for Robust Multigrid Methods , 1999, SIAM J. Sci. Comput..

[37]  J. Meijerink,et al.  An Efficient Preconditioned CG Method for the Solution of a Class of Layered Problems with Extreme Contrasts in the Coefficients , 1999 .

[38]  Ian G. Graham,et al.  Unstructured Additive Schwarz-Conjugate Gradient Method for Elliptic Problems with Highly Discontinuous Coefficients , 1999, SIAM J. Sci. Comput..

[39]  P. Oswald On the robustness of the BPX-preconditioner with respect to jumps in the coefficients , 1999, Math. Comput..

[40]  Jinchao Xu,et al.  Some Nonoverlapping Domain Decomposition Methods , 1998, SIAM Rev..

[41]  Panayot S. Vassilevski,et al.  On Two Ways of Stabilizing the Hierarchical Basis Multilevel Methods , 1997, SIAM Rev..

[42]  Marian Brezina,et al.  Balancing domain decomposition for problems with large jumps in coefficients , 1996, Math. Comput..

[43]  Michael Kuhn,et al.  Parallel solvers for linear and nonlinear exterior magnetic field problems based upon coupled FE/BE Formulations , 1996, Computing.

[44]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[45]  Junping Wang,et al.  New convergence estimates for multilevel algorithms for finite-element approximations , 1994 .

[46]  O. Widlund,et al.  Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions , 1994 .

[47]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[48]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[49]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[50]  Jinchao Xu,et al.  Some Estimates for a Weighted L 2 Projection , 1991 .

[51]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[52]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[53]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[54]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[55]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[56]  Vivek Sarin,et al.  Domain Decomposition , 2011, Encyclopedia of Parallel Computing.

[57]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[58]  J. Galvis,et al.  NEUMANN-NEUMANN METHODS FOR A DG DISCRETIZATION OF ELLIPTIC PROBLEMS WITH DISCONTINUOUS COEFFICIENTS ON GEOMETRICALLY NONCONFORMING SUBSTRUCTURES , 2009 .

[59]  Jinchao Xu,et al.  UNIFORM CONVERGENT MULTIGRID METHODS FOR ELLIPTIC PROBLEMS WITH STRONGLY DISCONTINUOUS COEFFICIENTS , 2008 .

[60]  Ludmil Zikatanov,et al.  Preconditioning of Symmetric Interior Penalty Discontinuous Galerkin FEM for Elliptic Problems , 2008 .

[61]  Veselin Dobrev,et al.  Preconditioning of discontinuous Galerkin methods for second order elliptic problems , 2007 .

[62]  Paola F. Antonietti,et al.  Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case , 2007 .

[63]  Ivan G. Graham,et al.  Massively parallel methods for semiconductor device modelling , 2005, Computing.

[64]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[65]  Susanne C. Brenner,et al.  Poincaré-Friedrichs Inequalities for Piecewise H1 Functions , 2003, SIAM J. Numer. Anal..

[66]  Christopher E. Kees,et al.  Versatile Two-Level Schwarz Preconditioners for Multiphase Flow , 2003 .

[67]  M. Dryja On Discontinuous Galerkin Methods for Elliptic Problems with Discontinuous Coefficients , 2003 .

[68]  Vít Dolejší,et al.  On the Discrete Friedrichs Inequality for Nonconforming Finite Elements , 1999 .

[69]  Rolf Stenberg,et al.  MORTARING BY A METHOD OF J.A. NITSCHE , 1998 .

[70]  Numerische Mathematik,et al.  Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements , 1997 .

[71]  Juan C. Meza,et al.  A Multigrid Preconditioner for the Semiconductor Equations , 1996, SIAM J. Sci. Comput..

[72]  P. Oswald,et al.  Remarks on the Abstract Theory of Additive and Multiplicative Schwarz Algorithms , 1995 .

[73]  Peter Oswald,et al.  Multilevel Finite Element Approximation , 1994 .

[74]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[75]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[76]  Olof B. Widlund,et al.  DUAL-PRIMAL FETI METHODS FOR THREE-DIMENSIONAL ELLIPTIC PROBLEMS WITH HETEROGENEOUS COEFFICIENTS , 2022 .