FIRST VARIATION OF THE GENERAL CURVATURE-DEPENDENT SURFACE ENERGY
暂无分享,去创建一个
[1] A. Rau. Variational Principles , 2021, Classical Mechanics.
[2] Charles M. Elliott,et al. Modeling and computation of two phase geometric biomembranes using surface finite elements , 2010, J. Comput. Phys..
[3] Ricardo H. Nochetto,et al. Geometrically Consistent Mesh Modification , 2010, SIAM J. Numer. Anal..
[4] Ricardo H. Nochetto,et al. Parametric FEM for geometric biomembranes , 2010, J. Comput. Phys..
[5] Andrea L. Bertozzi,et al. Higher-Order Feature-Preserving Geometric Regularization , 2010, SIAM J. Imaging Sci..
[6] Gerhard Dziuk,et al. Computational parametric Willmore flow , 2008, Numerische Mathematik.
[7] Harald Garcke,et al. Parametric Approximation of Willmore Flow and Related Geometric Evolution Equations , 2008, SIAM J. Sci. Comput..
[8] Ricardo H. Nochetto,et al. A Variational Shape Optimization Approach for Image Segmentation with a Mumford--Shah Functional , 2008, SIAM J. Sci. Comput..
[9] Miguel Sebastian Pauletti,et al. Parametric AFEM for geometric evolution equation and coupled fluid -membrane interaction , 2008 .
[10] Ricardo H. Nochetto,et al. Discrete gradient flows for shape optimization and applications , 2007 .
[11] Guillermo Sapiro,et al. New Possibilities with Sobolev Active Contours , 2007, International Journal of Computer Vision.
[12] Morteza Zadimoghaddam,et al. Minimizing movement , 2007, SODA '07.
[13] P. Cicuta,et al. Diffusion of liquid domains in lipid bilayer membranes. , 2006, The journal of physical chemistry. B.
[14] Raluca E. Rusu. An algorithm for the elastic flow of surfaces , 2005 .
[15] Martin Rumpf,et al. Axioms and variational problems in surface parameterization , 2004, Comput. Aided Geom. Des..
[16] Reiner Schätzle,et al. Removability of point singularities of Willmore surfaces , 2004 .
[17] Martin Rumpf,et al. A finite element method for surface restoration with smooth boundary conditions , 2004, Comput. Aided Geom. Des..
[18] Sarah L Veatch,et al. Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.
[19] Watt W. Webb,et al. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.
[20] Alfred M. Bruckstein,et al. Regularized Laplacian Zero Crossings as Optimal Edge Integrators , 2003, International Journal of Computer Vision.
[21] O. Faugeras,et al. Variational principles, surface evolution, PDE's, level set methods and the stereo problem , 1998, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..
[22] L. Vese,et al. A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.
[23] E. Kuwert,et al. The Willmore Flow with Small Initial Energy , 2001 .
[24] Gieri Simonett,et al. The Willmore flow near spheres , 2001, Differential and Integral Equations.
[25] O. Faugeras,et al. Level set based segmentation with intensity and curvature priors , 2000, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737).
[26] M. Laradji,et al. Elastic properties of surfactant monolayers at liquid–liquid interfaces: A molecular dynamics study , 2000 .
[27] Reinhard Lipowsky,et al. Spontaneous curvature of fluid vesicles induced by trans-bilayer sugar asymmetry , 1999, European Biophysics Journal.
[28] Olivier D. Faugeras,et al. Variational principles, surface evolution, PDEs, level set methods, and the stereo problem , 1998, IEEE Trans. Image Process..
[29] John W. Cahn,et al. Diffuse interfaces with sharp corners and facets: phase field models with strongly anisotropic surfaces , 1998 .
[30] S. Javadpour,et al. Phase separation dynamics in mixtures containing surfactants , 1997 .
[31] Geoffrey B. McFadden,et al. A ξ-vector formulation of anisotropic phase-field models: 3D asymptotics , 1996, European Journal of Applied Mathematics.
[32] G. Bellettini,et al. Anisotropic motion by mean curvature in the context of Finsler geometry , 1996 .
[33] F. Almgren,et al. OPTIMAL GEOMETRY IN EQUILIBRIUM AND GROWTH , 1995 .
[34] John W. Cahn,et al. Linking anisotropic sharp and diffuse surface motion laws via gradient flows , 1994 .
[35] Wheeler,et al. Phase-field models for anisotropic interfaces. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[36] F. Almgren,et al. Curvature-driven flows: a variational approach , 1993 .
[37] J. Taylor,et al. II—mean curvature and weighted mean curvature , 1992 .
[38] Chen,et al. Microemulsions: A Landau-Ginzburg theory. , 1990, Physical review letters.
[39] J. Taylor,et al. Crystalline variational problems , 1978 .
[40] James T. Jenkins,et al. The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .
[41] D. W. Hoffman,et al. A Vector Thermodynamics for Anisotropic Surfaces—II. Curved and Faceted Surfaces , 1974 .
[42] W. Helfrich. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.
[43] D. W. Hoffman,et al. A Vector Thermodynamics for Anisotropic Surfaces , 1972 .
[44] Matthew MacDonald,et al. Shapes and Geometries , 1987 .
[45] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[46] Michael Hintermüller,et al. A Second Order Shape Optimization Approach for Image Segmentation , 2004, SIAM J. Appl. Math..
[47] Michael Hintermüller,et al. An Inexact Newton-CG-Type Active Contour Approach for the Minimization of the Mumford-Shah Functional , 2004, Journal of Mathematical Imaging and Vision.
[48] E. Kuwert,et al. Existence of minimizing Willmore surfaces of prescribed genus , 2003 .
[49] Gerhard Dziuk,et al. Evolution of Elastic Curves in Rn: Existence and Computation , 2002, SIAM J. Math. Anal..
[50] E. Kuwert,et al. Gradient flow for the Willmore functional , 2002 .
[51] Udo Seifert,et al. Configurations of fluid membranes and vesicles , 1997 .
[52] L. Simon. Existence of surfaces minimizing the Willmore functional , 1993 .
[53] Jan Sokolowski,et al. Introduction to shape optimization , 1992 .
[54] Bang‐Yen Chen,et al. TOTAL CURVATURE IN RIEMANNIAN GEOMETRY (Ellis Horwood Series: Mathematics and Its Applications) , 1984 .
[55] T. Willmore. Total curvature in Riemannian geometry , 1982 .
[56] D. W. Hoffman,et al. A vector thermodynamics for anisotropic surfaces II. Curved and faceted surfaces , 1974 .