Probing tiny motions of nanomechanical resonators: classical or quantum mechanical?

We propose a spectroscopic approach to probe tiny vibrations of a nanomechanical resonator (NAMR), which may reveal classical or quantum behavior depending on the decoherence-inducing environment. Our proposal is based on the detection of the voltage-fluctuation spectrum in a superconducting transmission line resonator (TLR), which is indirectly coupled to the NAMR via a controllable Josephson qubit acting as a quantum transducer. The classical (quantum mechanical) vibrations of the NAMR induce symmetric (asymmetric) Stark shifts of the qubit levels, which can be measured by the voltage fluctuations in the TLR. Thus, the motion of the NAMR, including if it is quantum mechanical or not, could be probed by detecting the voltage-fluctuation spectrum of the TLR.

[1]  A. Gossard,et al.  Nanomechanical displacement sensing using a quantum point contact , 2002 .

[2]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[3]  Dreyer,et al.  Quantum Rabi oscillation: A direct test of field quantization in a cavity. , 1996, Physical review letters.

[4]  M. Roukes,et al.  Nanoelectromechanical systems: Nanodevice motion at microwave frequencies , 2003, Nature.

[5]  P. Zoller,et al.  Ground-state cooling of mechanical resonators , 2003, cond-mat/0310229.

[6]  Quang,et al.  Spontaneous emission near the edge of a photonic band gap. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[7]  M. Bocko,et al.  On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress , 1996 .

[8]  G. Milburn,et al.  Ion trap transducers for quantum electromechanical oscillators , 2005, quant-ph/0501037.

[9]  Franco Nori,et al.  Quantum computation with Josephson qubits using a current-biased information bus , 2005 .

[10]  S. Girvin,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2004, Physical review letters.

[11]  F. Nori,et al.  Superconducting Circuits and Quantum Information , 2005, quant-ph/0601121.

[12]  Quantum-limited measurement and information in mesoscopic detectors , 2002, cond-mat/0211001.

[13]  Law,et al.  Modification of a vacuum Rabi splitting via a frequency-modulated cavity mode. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[14]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[15]  A. Cleland,et al.  Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing , 2004, quant-ph/0409179.

[16]  P. Zoller,et al.  Generation of squeezed states of nanomechanical resonators by reservoir engineering , 2004, cond-mat/0406058.

[17]  S. Girvin,et al.  Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation , 2004, cond-mat/0402216.

[18]  A. Cho Researchers Race to Put the Quantum Into Mechanics , 2003, Science.

[19]  M. Blencowe,et al.  Entanglement and decoherence of a micromechanical resonator via coupling to a Cooper-pair box. , 2002, Physical review letters.

[20]  C. P. Sun,et al.  Cooling mechanism for a nonmechanical resonator by periodic coupling to a Cooper pair box , 2004, quant-ph/0410149.

[21]  B. Gu,et al.  Decay distribution of spontaneous emission from an assembly of atoms in photonic crystals with pseudogaps. , 2002, Physical review letters.

[22]  Caldeira,et al.  Influence of damping on quantum interference: An exactly soluble model. , 1985, Physical review. A, General physics.

[23]  G. Schoen,et al.  Quantum Manipulations of Small Josephson Junctions , 1997, cond-mat/9706016.

[24]  Alexander Shnirman,et al.  Cavity QED in superconducting circuits: susceptibility at elevated temperatures , 2004 .

[25]  F. Nori,et al.  Quantum information processing with superconducting qubits in a microwave field , 2003, cond-mat/0306207.

[26]  Charge transport through a single-electron transistor with a mechanically oscillating island , 2004, cond-mat/0401486.

[27]  Pritiraj Mohanty,et al.  Evidence for quantized displacement in macroscopic nanomechanical oscillators. , 2005, Physical review letters.

[28]  Miles P. Blencowe,et al.  Quantum electromechanical systems , 2004 .

[29]  Javier Tamayo,et al.  Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control , 2005 .

[30]  M. S. Zubairy,et al.  Quantum optics: Dedication , 1997 .

[31]  F. Nori,et al.  Measuring the quality factor of a microwave cavity using superconducting qubit devices , 2005, quant-ph/0506016.

[32]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[33]  K. Schwab,et al.  Quantum measurement of a coupled nanomechanical resonator–Cooper-pair box system , 2003, cond-mat/0301252.

[34]  R. L. Badzey,et al.  Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance , 2005, Nature.

[35]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[36]  G. J. Milburn,et al.  Comment on "Evidence for quantized displacement in macroscopic nanomechanical oscillators". , 2005, Physical review letters.

[37]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[38]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[39]  R. L. Badzey,et al.  Gaidarzhyet al.Reply , 2005 .

[40]  C. P. Sun,et al.  Quantum transducers: Integrating transmission lines and nanomechanical resonators via charge qubits , 2005, quant-ph/0504056.

[41]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[42]  S. Girvin,et al.  Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics , 2004, Nature.