Strengthening Chvátal-Gomory Cuts for the Stable Set Problem
暂无分享,去创建一个
Adam N. Letchford | Francesca Marzi | Fabrizio Rossi | Stefano Smriglio | A. Letchford | F. Rossi | S. Smriglio | Francesca Marzi
[1] Adam N. Letchford,et al. An application of the Lovász–Schrijver M(K, K) operator to the stable set problem , 2009, Math. Program..
[2] Annegret Wagler,et al. On the Chvátal rank of linear relaxations of the stable set polytope , 2010, Int. Trans. Oper. Res..
[3] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[4] Adam N. Letchford,et al. Approximating the Lovász θ Function with the Subgradient Method , 2013, Electron. Notes Discret. Math..
[5] Jonas Holmerin,et al. Clique Is Hard to Approximate within n1-o(1) , 2000, ICALP.
[6] Ralph E. Gomory,et al. Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem , 2010, 50 Years of Integer Programming.
[7] S. Coniglio,et al. On the exact separation of rank inequalities for the maximum stable set problem , 2014 .
[8] Egon Balas,et al. Polyhedral methods for the maximum clique problem , 1994, Cliques, Coloring, and Satisfiability.
[9] Kent Andersen,et al. Coefficient strengthening: a tool for reformulating mixed-integer programs , 2007, Math. Program..
[10] Ralph E. Gomory,et al. An algorithm for integer solutions to linear programs , 1958 .
[11] Franz Rendl,et al. Semidefinite programming relaxations for graph coloring and maximal clique problems , 2007, Math. Program..
[12] Ferenc Juhász,et al. The asymptotic behaviour of lovász’ ϑ function for random graphs , 1982, Comb..
[13] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[14] M. Grötschel,et al. Combinatorial optimization , 1996 .
[15] Javier Marenco,et al. General Cut-Generating Procedures for the Stable Set Polytope , 2015, Discret. Appl. Math..
[16] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[17] Gerhard Reinelt,et al. A Branch and Cut solver for the maximum stable set problem , 2011, J. Comb. Optim..
[18] Johan Håstad,et al. Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[19] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[20] R. Borndörfer,et al. Aspects of Set Packing, Partitioning, and Covering , 1998 .
[21] Marco Locatelli,et al. Copositivity cuts for improving SDP bounds on the clique number , 2010, Math. Program..
[22] G. Nemhauser,et al. A Strong Cutting Plane/Branch-and-Bound Algorithm for Node Packing , 1992 .
[23] Fabrizio Rossi,et al. A branch-and-cut algorithm for the maximum cardinality stable set problem , 2001, Oper. Res. Lett..
[24] Fabrizio Rossi,et al. Strong lift-and-project cutting planes for the stable set problem , 2013, Math. Program..
[25] Adam N. Letchford,et al. Ellipsoidal Relaxations of the Stable Set Problem: Theory and Algorithms , 2015, SIAM J. Optim..
[26] Marco Locatelli. Improving upper bounds for the clique number by non-valid inequalities , 2015, Math. Program..
[27] Samuel Burer,et al. Solving Lift-and-Project Relaxations of Binary Integer Programs , 2006, SIAM J. Optim..
[28] Manfred W. Padberg,et al. On the facial structure of set packing polyhedra , 1973, Math. Program..
[29] Franz Rendl,et al. Computational Experience with Stable Set Relaxations , 2002, SIAM J. Optim..
[30] Johan Håstad,et al. Clique is hard to approximate within n1-epsilon , 1996, Electron. Colloquium Comput. Complex..
[31] Javier Marenco,et al. A Strengthened General Cut-Generating Procedure for the Stable Set Polytope , 2015, Electron. Notes Discret. Math..
[32] Matteo Fischetti,et al. Optimizing over the first Chvátal closure , 2005, Math. Program..