Integrating MNF and HHT Transformations into Artificial Neural Networks for Hyperspectral Image Classification

[1]  Ming-Der Yang,et al.  Mapping of the 26 December 2004 tsunami disaster by using FORMOSAT‐2 images , 2007 .

[2]  Johannes R. Sveinsson,et al.  Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles , 2008, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[3]  Anna Linderhed,et al.  2D empirical mode decompositions in the spirit of image compression , 2002, SPIE Defense + Commercial Sensing.

[4]  S. Hsu,et al.  Application of remotely sensed data to the assessment of terrain factors affecting the Tsao-Ling landslide , 2004 .

[5]  Ying Li,et al.  Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network , 2017, Remote. Sens..

[6]  Jon Atli Benediktsson,et al.  Feature Extraction for Hyperspectral Imagery: The Evolution From Shallow to Deep: Overview and Toolbox , 2020, IEEE Geoscience and Remote Sensing Magazine.

[7]  Jie Geng,et al.  Hyperspectral image classification via contextual deep learning , 2015, EURASIP Journal on Image and Video Processing.

[8]  Heesung Kwon,et al.  Contextual deep CNN based hyperspectral classification , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[9]  Ming-Der Yang,et al.  Morphological segmentation based on edge detection for sewer pipe defects on CCTV images , 2011, Expert Syst. Appl..

[10]  Taskin Kavzoglu,et al.  Increasing the accuracy of neural network classification using refined training data , 2009, Environ. Model. Softw..

[11]  Pei Liu,et al.  Feature Extraction of Sewer Pipe Defects Using Wavelet Transform and Co-Occurrence Matrix , 2011, Int. J. Wavelets Multiresolution Inf. Process..

[12]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[13]  Vikrant Bhateja,et al.  An Improved Local Statistics Filter for Denoising of SAR Images , 2013, ISI.

[14]  Haokui Zhang,et al.  Spectral-spatial classification of hyperspectral imagery using a dual-channel convolutional neural network , 2017 .

[15]  Jason Weston,et al.  Semisupervised Neural Networks for Efficient Hyperspectral Image Classification , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Lorenzo Bruzzone,et al.  Feature Selection Based on High Dimensional Model Representation for Hyperspectral Images , 2017, IEEE Transactions on Image Processing.

[17]  Lorenzo Bruzzone,et al.  A technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images , 1999, IEEE Trans. Geosci. Remote. Sens..

[18]  Yangkang Chen,et al.  Enhancing seismic reflections using empirical mode decomposition in the flattened domain , 2015 .

[19]  Carlo Gatta,et al.  Unsupervised Deep Feature Extraction for Remote Sensing Image Classification , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Jun Li,et al.  Active Learning With Convolutional Neural Networks for Hyperspectral Image Classification Using a New Bayesian Approach , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Ming-Der Yang,et al.  Segmenting ideal morphologies of sewer pipe defects on CCTV images for automated diagnosis , 2009, Expert Syst. Appl..

[22]  Allan Aasbjerg Nielsen,et al.  Kernel Maximum Autocorrelation Factor and Minimum Noise Fraction Transformations , 2011, IEEE Transactions on Image Processing.

[23]  Joonwhoan Lee,et al.  Classification of apple leaf conditions in hyper-spectral images for diagnosis of Marssonina blotch using mRMR and deep neural network , 2018, Comput. Electron. Agric..

[24]  Fei Zhu,et al.  Spectral-Spatial Feature Extraction and Classification by ANN Supervised With Center Loss in Hyperspectral Imagery , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Peijun Du,et al.  Hyperspectral Remote Sensing Image Classification Based on Rotation Forest , 2014, IEEE Geoscience and Remote Sensing Letters.

[26]  Matthew L. Clark,et al.  One-Dimensional Convolutional Neural Network Land-Cover Classification of Multi-Seasonal Hyperspectral Imagery in the San Francisco Bay Area, California , 2017, Remote. Sens..

[27]  Maciej Trusiak,et al.  Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition , 2014 .

[28]  Jon Atli Benediktsson,et al.  Spectral–Spatial Classification of Multispectral Images Using Kernel Feature Space Representation , 2014, IEEE Geoscience and Remote Sensing Letters.

[29]  Gang Wang,et al.  Deep Learning-Based Classification of Hyperspectral Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[30]  Manuel Mazzara,et al.  Spatial-prior generalized fuzziness extreme learning machine autoencoder-based active learning for hyperspectral image classification , 2020 .

[31]  Naoto Yokoya,et al.  Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Begüm Demir,et al.  Hyperspectral Image Classification Using Denoising of Intrinsic Mode Functions , 2011, IEEE Geoscience and Remote Sensing Letters.

[33]  David Bergström,et al.  Hyperspectral image analysis using deep learning — A review , 2016, 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA).

[34]  Zhongliang Fu,et al.  A Novel Hyperspectral Image Classification Pattern Using Random Patches Convolution and Local Covariance , 2019, Remote. Sens..

[35]  Xiao Xiang Zhu,et al.  A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data , 2016, IEEE Geoscience and Remote Sensing Letters.

[36]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Jesmin F. Khan,et al.  Fast and Adaptive Bidimensional Empirical Mode Decomposition Using Order-Statistics Filter Based Envelope Estimation , 2008, EURASIP J. Adv. Signal Process..

[38]  Lianru Gao,et al.  Optimized Kernel Minimum Noise Fraction Transformation for Hyperspectral Image Classification , 2017, Remote. Sens..

[39]  Ming-Der Yang,et al.  Semantic Segmentation Using Deep Learning with Vegetation Indices for Rice Lodging Identification in Multi-date UAV Visible Images , 2020, Remote. Sens..

[40]  Xiuping Jia,et al.  Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[41]  Fan Zhang,et al.  Deep Convolutional Neural Networks for Hyperspectral Image Classification , 2015, J. Sensors.

[42]  Ming-Der Yang,et al.  Systematic image quality assessment for sewer inspection , 2011, Expert Syst. Appl..

[43]  Ming-Der Yang,et al.  Exploring Long Term Spatial Vegetation Trends in Taiwan from AVHRR NDVI3g Dataset Using RDA and HCA Analyses , 2016, Remote. Sens..

[44]  Ming-Der Yang,et al.  Hyperspectral Image Classification Using Fast and Adaptive Bidimensional Empirical Mode Decomposition With Minimum Noise Fraction , 2016, IEEE Geoscience and Remote Sensing Letters.

[45]  Zongliang Gan,et al.  Residual Group Channel and Space Attention Network for Hyperspectral Image Classification , 2020, Remote. Sens..

[46]  Guangchun Luo,et al.  Minimum Noise Fraction versus Principal Component Analysis as a Preprocessing Step for Hyperspectral Imagery Denoising , 2016 .

[47]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.