Minimum cuts in near-linear time

We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a "semiduality" between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a random- ized (Monte Carlo) algorithm that finds a minimum cut in an m-edge, n-vertex graph with high probability in O(m log 3 n) time. We also give a simpler randomized algorithm that finds all minimum cuts with high probability in O(n 2 log n) time. This variant has an optimal 51# parallelization. Both

[1]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[2]  David R. Karger,et al.  Global min-cuts in RNC, and other ramifications of a simple min-out algorithm , 1993, SODA '93.

[3]  David R. Karger,et al.  A randomized fully polynomial time approximation scheme for the all terminal network reliability problem , 1995, STOC '95.

[4]  Toshihide Ibaraki,et al.  Computing All Small Cuts in an Undirected Network , 1997, SIAM J. Discret. Math..

[5]  Éva Tardos,et al.  Fast approximation algorithms for fractional packing and covering problems , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[6]  Uzi Vishkin,et al.  Recursive Star-Tree Parallel Data Structure , 1993, SIAM J. Comput..

[7]  András A. Benczúr,et al.  A representation of cuts within 6/5 times the edge connectivity with applications , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[8]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[9]  V. Rich Personal communication , 1989, Nature.

[10]  J. Picard,et al.  Selected Applications of Minimum Cuts in Networks , 1982 .

[11]  Philip N. Klein,et al.  A Linear-Work Parallel Algorithm for Finding Minimum Spanning Trees , 1994, SPAA 1994.

[12]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  David R. Karger,et al.  Random sampling in cut, flow, and network design problems , 1994, STOC '94.

[14]  Béla Bollobás,et al.  Random Graphs , 1985 .

[15]  Rodrigo A. Botafogo Cluster analysis for hypertext systems , 1993, SIGIR.

[16]  David P. Williamson,et al.  On the Number of Small Cuts in a Graph , 1996, Inf. Process. Lett..

[17]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[18]  D.R. Karker Random sampling in matroids, with applications to graph connectivity and minimum spanning trees , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[19]  Toshihide Ibaraki,et al.  Computing All Small Cuts in Undirected Networks , 1994, ISAAC.

[20]  David R. Karger,et al.  A new approach to the minimum cut problem , 1996, JACM.

[21]  Harold N. Gabow A matroid approach to finding edge connectivity and packing arborescences , 1991, STOC '91.

[22]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[23]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[24]  D. Karger,et al.  Random sampling in graph optimization problems , 1995 .

[25]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[26]  Donald B. Johnson,et al.  A parallel algorithm for computing minimum spanning trees , 1992, SPAA '92.

[27]  Mihalis Yannakakis,et al.  Suboptimal Cuts: Their Enumeration, Weight and Number (Extended Abstract) , 1992, ICALP.

[28]  Robert E. Tarjan,et al.  A linear-time algorithm for a special case of disjoint set union , 1983, J. Comput. Syst. Sci..

[29]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[30]  V. Ramachandran Proceedings of the fourth annual ACM-SIAM symposium on Discrete algorithms , 1993 .

[31]  David R. Karger,et al.  An Õ(n2) algorithm for minimum cuts , 1993, STOC.

[32]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[33]  Giovanni Rinaldi,et al.  An efficient algorithm for the minimum capacity cut problem , 1990, Math. Program..

[34]  Toshihide Ibaraki,et al.  Computing Edge-Connectivity in Multigraphs and Capacitated Graphs , 1992, SIAM J. Discret. Math..

[35]  Francisco Barahona,et al.  Packing Spanning Trees , 1995, Math. Oper. Res..

[36]  Harold N. Gabow,et al.  Forests, frames, and games: algorithms for matroid sums and applications , 1988, STOC '88.

[37]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[38]  David R. Karger,et al.  An NC Algorithm for Minimum Cuts , 1997, SIAM J. Comput..

[39]  James B. Orlin,et al.  A Faster Algorithm for Finding the Minimum Cut in a Directed Graph , 1994, J. Algorithms.

[40]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.