On Analytical Routes to Chaos in Nonlinear Systems

In this paper, the analytical methods for approximate solutions of periodic motions to chaos in nonlinear dynamical systems are reviewed. Briefly discussed are the traditional analytical methods including the Lagrange stand form, perturbation methods, and method of averaging. A brief literature survey of approximate methods in application is completed, and the weakness of current existing approximate methods is also discussed. Based on the generalized harmonic balance, the analytical solutions of periodic motions in nonlinear dynamical systems with/without time-delay are reviewed, and the analytical solutions for period-m motion to quasi-periodic motion are discussed. The analytical bifurcation trees of period-1 motion to chaos are presented as an application.

[1]  J. E. Littlewood,et al.  On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .

[2]  Albert C. J. Luo,et al.  Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance , 2012 .

[3]  N. Levinson A Simple Second Order Differential Equation with Singular Motions. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[4]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Vimal Singh,et al.  Perturbation methods , 1991 .

[6]  Albert C. J. Luo,et al.  Analytical Solutions for Stable and Unstable Period-1 Motions in a Periodically Forced Oscillator With Quadratic Nonlinearity , 2013 .

[7]  N. Wax,et al.  On the Periodic Solution of the van der Pol Equation , 1965 .

[8]  S. T. Noah,et al.  Mode-Locking and Chaos in a Jeffcott Rotor With Bearing Clearances , 1994 .

[9]  Vincent T. Coppola,et al.  Averaging using elliptic functions: approximation of limit cycles , 1990 .

[10]  Albert C. J. Luo,et al.  Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator , 2013 .

[11]  Albert C. J. Luo,et al.  Toward Analytical Chaos in Nonlinear Systems: Luo/Toward Analytical Chaos in Nonlinear Systems , 2014 .

[12]  Albert C. J. Luo,et al.  Analytical Dynamics of Period-M Flows and Chaos in nonlinear Systems , 2012, Int. J. Bifurc. Chaos.

[13]  H. H. Jeffcott XXVII. The lateral vibration of loaded shafts in the neighbourhood of a whirling speed.—The effect of want of balance , 1919 .

[14]  Albert C. J. Luo,et al.  On Periodic Motions in a Parametric Hardening Duffing Oscillator , 2014, Int. J. Bifurc. Chaos.

[15]  S. T. Noah,et al.  QUASI-PERIODIC RESPONSE AND STABILITY ANALYSIS FOR A NON-LINEAR JEFFCOTT ROTOR , 1996 .

[16]  Antonio Buonomo The Periodic Solution of Van Der Pol's Equation , 1998, SIAM J. Appl. Math..

[17]  David A. Rand,et al.  Bifurcations of the forced van der Pol oscillator , 1978 .

[18]  Albert C. J. Luo,et al.  Asymmetric periodic Motions with Chaos in a Softening Duffing oscillator , 2013, Int. J. Bifurc. Chaos.

[19]  K. Y. Sze,et al.  Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method , 2008 .

[20]  Albert C. J. Luo,et al.  Chaotic motion in the resonant separatrix bands of a Mathieu-Duffing oscillator with a twin-well potential , 2004 .

[21]  Edmund Taylor Whittaker,et al.  On the general solution of Mathieu's equation , 1913, Proceedings of the Edinburgh Mathematical Society.

[22]  Y. Ueda EXPLOSION OF STRANGE ATTRACTORS EXHIBITED BY DUFFING'S EQUATION , 1979 .

[23]  Albert C. J. Luo,et al.  Global Transversality, Resonance and Chaotic Dynamics , 2008 .

[24]  F. Verhulst Nonlinear Differential Equations and Dynamical Systems , 1989 .

[25]  Influences of harmonic coupling on bifurcations in duffing oscillator with bounded potential well , 1992 .

[26]  P. Fatou,et al.  Sur le mouvement d'un système soumis à des forces à courte période , 1928 .

[27]  Albert C. J. Luo,et al.  ANALYTICAL PREDICTIONS OF CHAOS IN A NON-LINEAR ROD , 1999 .

[28]  M. Mond,et al.  Stability Analysis Of The Non-Linear Mathieu Equation , 1993 .

[29]  Albert C. J. Luo,et al.  Analytical solutions for period-m motions in a periodically forced van der Pol oscillator , 2013 .

[30]  William B. Day Asymptotic expansions in nonlinear rotordynamics , 1987 .

[31]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[32]  C. Hayashi,et al.  Nonlinear oscillations in physical systems , 1987 .

[33]  Albert C. J. Luo,et al.  Analytical Routes of Period-1 Motions to Chaos in a Periodically Forced Duffing Oscillator with a Twin-well Potential , 2012 .

[34]  F. F. Ehrich,et al.  High Order Subharmonic Response of High Speed Rotors in Bearing Clearance , 1988 .

[35]  S. T. Noah,et al.  Bifurcation analysis for a modified Jeffcott rotor with bearing clearances , 1990 .

[36]  Keith D. Stroyan,et al.  Continuous Dynamical Systems , 1993 .

[37]  Albert C. J. Luo,et al.  Complex period-1 motions in a periodically forced, quadratic nonlinear oscillator , 2015 .

[38]  Huang,et al.  Potential dependence of the bifurcation structure in generalized Duffing oscillators. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  Randolph S. Zounes,et al.  Transition Curves for the Quasi-Periodic Mathieu Equation , 1998, SIAM J. Appl. Math..

[40]  malaman Mécanique analytique I , 2016 .

[41]  Bo Yu,et al.  Bifurcation Trees of Periodic Motions to Chaos in a Parametric, Quadratic Nonlinear Oscillator , 2014, Int. J. Bifurc. Chaos.

[42]  C. Hsu On the Parametric Excitation of a Dynamic System Having Multiple Degrees of Freedom , 1963 .

[43]  A. Buonomo On the periodic solution of the van der Pol equation for small values of the damping parameter , 1998, Int. J. Circuit Theory Appl..

[44]  B. V. D. Pol,et al.  Frequency Demultiplication , 1927, Nature.

[45]  Albert C. J. Luo,et al.  A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity , 1997 .

[46]  Jun Jiang,et al.  Stability Analysis of Sliding Whirl in a Nonlinear Jeffcott Rotor with Cross-Coupling Stiffness Coefficients , 2001 .

[47]  Dara W. Childs Fractional-frequency rotor motion due to nonsymmetric clearance effects , 1982 .

[48]  A. Luo,et al.  Period-m motions and bifurcation trees in a periodically forced, van der Pol-Duffing oscillator , 2014 .

[49]  M. L. Cartwright On non-linear differential equations of the second order , 1949 .

[50]  Albert C. J. Luo Toward Analytical Chaos in Nonlinear Systems , 2014 .

[51]  G. Tomlinson,et al.  Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis , 2008 .

[52]  A. Sändig,et al.  Nonlinear Differential Equations , 1980 .

[53]  W. K. Tso,et al.  Parametric Excitation of a Nonlinear System , 1965 .

[54]  S. T. Noah,et al.  Nonlinear steady-state response of a rotor-support system , 1987 .

[55]  Eugene Sevin,et al.  On the Parametric Excitation of Pendulum-Type Vibration Absorber , 1961 .

[56]  David A. Rand,et al.  The bifurcations of duffing's equation: An application of catastrophe theory , 1976 .

[57]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .

[58]  A. Luo,et al.  Analytical period-3 motions to chaos in a hardening Duffing oscillator , 2013 .

[59]  Albert C. J. Luo,et al.  Analytical periodic motions and bifurcations in a nonlinear rotor system , 2014 .

[60]  F. Chu,et al.  BIFURCATION AND CHAOS IN A RUB-IMPACT JEFFCOTT ROTOR SYSTEM , 1998 .

[61]  Albert C. J. Luo,et al.  Unstable and Stable Period-m Motions in a Twin-well Potential Duffing Oscillator , 2012 .

[62]  Ivana Kovacic,et al.  A generalized van der Pol type oscillator: Investigation of the properties of its limit cycle , 2012, Math. Comput. Model..

[63]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .

[64]  C. Hsu,et al.  Further Results on Parametric Excitation of a Dynamic System , 1965 .

[65]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .

[66]  Albert C. J. Luo,et al.  Period-m Motions and Bifurcation Trees in a Periodically Excited, Quadratic Nonlinear Oscillator , 2013 .

[67]  J. E. Littlewood,et al.  On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .

[68]  A. Luo Analytical solutions for periodic motions to chaos in nonlinear systems with/without time-delay , 2013 .

[69]  Edmund Pinney,et al.  Nonlinear differential equations , 1955 .

[70]  I. C. Begg,et al.  Friction Induced Rotor Whirl—A Study in Stability , 1974 .

[71]  T. Morrison,et al.  Dynamical Systems , 2021, Nature.

[72]  Albert C. J. Luo,et al.  Period-3 Motions to Chaos in a Softening Duffing Oscillator , 2014, Int. J. Bifurc. Chaos.