On Analytical Routes to Chaos in Nonlinear Systems
暂无分享,去创建一个
[1] J. E. Littlewood,et al. On Non‐Linear Differential Equations of the Second Order: I. the Equation y¨ − k(1‐y2)y˙ + y = bλk cos(λl + α), k Large , 1945 .
[2] Albert C. J. Luo,et al. Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance , 2012 .
[3] N. Levinson. A Simple Second Order Differential Equation with Singular Motions. , 1948, Proceedings of the National Academy of Sciences of the United States of America.
[4] P. Holmes,et al. A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[5] Vimal Singh,et al. Perturbation methods , 1991 .
[6] Albert C. J. Luo,et al. Analytical Solutions for Stable and Unstable Period-1 Motions in a Periodically Forced Oscillator With Quadratic Nonlinearity , 2013 .
[7] N. Wax,et al. On the Periodic Solution of the van der Pol Equation , 1965 .
[8] S. T. Noah,et al. Mode-Locking and Chaos in a Jeffcott Rotor With Bearing Clearances , 1994 .
[9] Vincent T. Coppola,et al. Averaging using elliptic functions: approximation of limit cycles , 1990 .
[10] Albert C. J. Luo,et al. Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator , 2013 .
[11] Albert C. J. Luo,et al. Toward Analytical Chaos in Nonlinear Systems: Luo/Toward Analytical Chaos in Nonlinear Systems , 2014 .
[12] Albert C. J. Luo,et al. Analytical Dynamics of Period-M Flows and Chaos in nonlinear Systems , 2012, Int. J. Bifurc. Chaos.
[13] H. H. Jeffcott. XXVII. The lateral vibration of loaded shafts in the neighbourhood of a whirling speed.—The effect of want of balance , 1919 .
[14] Albert C. J. Luo,et al. On Periodic Motions in a Parametric Hardening Duffing Oscillator , 2014, Int. J. Bifurc. Chaos.
[15] S. T. Noah,et al. QUASI-PERIODIC RESPONSE AND STABILITY ANALYSIS FOR A NON-LINEAR JEFFCOTT ROTOR , 1996 .
[16] Antonio Buonomo. The Periodic Solution of Van Der Pol's Equation , 1998, SIAM J. Appl. Math..
[17] David A. Rand,et al. Bifurcations of the forced van der Pol oscillator , 1978 .
[18] Albert C. J. Luo,et al. Asymmetric periodic Motions with Chaos in a Softening Duffing oscillator , 2013, Int. J. Bifurc. Chaos.
[19] K. Y. Sze,et al. Bifurcation and route-to-chaos analyses for Mathieu–Duffing oscillator by the incremental harmonic balance method , 2008 .
[20] Albert C. J. Luo,et al. Chaotic motion in the resonant separatrix bands of a Mathieu-Duffing oscillator with a twin-well potential , 2004 .
[21] Edmund Taylor Whittaker,et al. On the general solution of Mathieu's equation , 1913, Proceedings of the Edinburgh Mathematical Society.
[22] Y. Ueda. EXPLOSION OF STRANGE ATTRACTORS EXHIBITED BY DUFFING'S EQUATION , 1979 .
[23] Albert C. J. Luo,et al. Global Transversality, Resonance and Chaotic Dynamics , 2008 .
[24] F. Verhulst. Nonlinear Differential Equations and Dynamical Systems , 1989 .
[25] Influences of harmonic coupling on bifurcations in duffing oscillator with bounded potential well , 1992 .
[26] P. Fatou,et al. Sur le mouvement d'un système soumis à des forces à courte période , 1928 .
[27] Albert C. J. Luo,et al. ANALYTICAL PREDICTIONS OF CHAOS IN A NON-LINEAR ROD , 1999 .
[28] M. Mond,et al. Stability Analysis Of The Non-Linear Mathieu Equation , 1993 .
[29] Albert C. J. Luo,et al. Analytical solutions for period-m motions in a periodically forced van der Pol oscillator , 2013 .
[30] William B. Day. Asymptotic expansions in nonlinear rotordynamics , 1987 .
[31] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[32] C. Hayashi,et al. Nonlinear oscillations in physical systems , 1987 .
[33] Albert C. J. Luo,et al. Analytical Routes of Period-1 Motions to Chaos in a Periodically Forced Duffing Oscillator with a Twin-well Potential , 2012 .
[34] F. F. Ehrich,et al. High Order Subharmonic Response of High Speed Rotors in Bearing Clearance , 1988 .
[35] S. T. Noah,et al. Bifurcation analysis for a modified Jeffcott rotor with bearing clearances , 1990 .
[36] Keith D. Stroyan,et al. Continuous Dynamical Systems , 1993 .
[37] Albert C. J. Luo,et al. Complex period-1 motions in a periodically forced, quadratic nonlinear oscillator , 2015 .
[38] Huang,et al. Potential dependence of the bifurcation structure in generalized Duffing oscillators. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[39] Randolph S. Zounes,et al. Transition Curves for the Quasi-Periodic Mathieu Equation , 1998, SIAM J. Appl. Math..
[40] malaman. Mécanique analytique I , 2016 .
[41] Bo Yu,et al. Bifurcation Trees of Periodic Motions to Chaos in a Parametric, Quadratic Nonlinear Oscillator , 2014, Int. J. Bifurc. Chaos.
[42] C. Hsu. On the Parametric Excitation of a Dynamic System Having Multiple Degrees of Freedom , 1963 .
[43] A. Buonomo. On the periodic solution of the van der Pol equation for small values of the damping parameter , 1998, Int. J. Circuit Theory Appl..
[44] B. V. D. Pol,et al. Frequency Demultiplication , 1927, Nature.
[45] Albert C. J. Luo,et al. A quantitative stability and bifurcation analyses of the generalized duffing oscillator with strong nonlinearity , 1997 .
[46] Jun Jiang,et al. Stability Analysis of Sliding Whirl in a Nonlinear Jeffcott Rotor with Cross-Coupling Stiffness Coefficients , 2001 .
[47] Dara W. Childs. Fractional-frequency rotor motion due to nonsymmetric clearance effects , 1982 .
[48] A. Luo,et al. Period-m motions and bifurcation trees in a periodically forced, van der Pol-Duffing oscillator , 2014 .
[49] M. L. Cartwright. On non-linear differential equations of the second order , 1949 .
[50] Albert C. J. Luo. Toward Analytical Chaos in Nonlinear Systems , 2014 .
[51] G. Tomlinson,et al. Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis , 2008 .
[52] A. Sändig,et al. Nonlinear Differential Equations , 1980 .
[53] W. K. Tso,et al. Parametric Excitation of a Nonlinear System , 1965 .
[54] S. T. Noah,et al. Nonlinear steady-state response of a rotor-support system , 1987 .
[55] Eugene Sevin,et al. On the Parametric Excitation of Pendulum-Type Vibration Absorber , 1961 .
[56] David A. Rand,et al. The bifurcations of duffing's equation: An application of catastrophe theory , 1976 .
[57] N. Bogolyubov,et al. Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .
[58] A. Luo,et al. Analytical period-3 motions to chaos in a hardening Duffing oscillator , 2013 .
[59] Albert C. J. Luo,et al. Analytical periodic motions and bifurcations in a nonlinear rotor system , 2014 .
[60] F. Chu,et al. BIFURCATION AND CHAOS IN A RUB-IMPACT JEFFCOTT ROTOR SYSTEM , 1998 .
[61] Albert C. J. Luo,et al. Unstable and Stable Period-m Motions in a Twin-well Potential Duffing Oscillator , 2012 .
[62] Ivana Kovacic,et al. A generalized van der Pol type oscillator: Investigation of the properties of its limit cycle , 2012, Math. Comput. Model..
[63] George D. Birkhoff,et al. Proof of Poincaré’s geometric theorem , 1913 .
[64] C. Hsu,et al. Further Results on Parametric Excitation of a Dynamic System , 1965 .
[65] N. Levinson,et al. A Second Order Differential Equation with Singular Solutions , 1949 .
[66] Albert C. J. Luo,et al. Period-m Motions and Bifurcation Trees in a Periodically Excited, Quadratic Nonlinear Oscillator , 2013 .
[67] J. E. Littlewood,et al. On Non-Linear Differential Equations of the Second Order: II. The Equation .. y + kf(y, . y + g(y, k) = p(t) = p 1 (t) + kp 2 (t); k > 0, f(y) > 1 , 1947 .
[68] A. Luo. Analytical solutions for periodic motions to chaos in nonlinear systems with/without time-delay , 2013 .
[69] Edmund Pinney,et al. Nonlinear differential equations , 1955 .
[70] I. C. Begg,et al. Friction Induced Rotor Whirl—A Study in Stability , 1974 .
[71] T. Morrison,et al. Dynamical Systems , 2021, Nature.
[72] Albert C. J. Luo,et al. Period-3 Motions to Chaos in a Softening Duffing Oscillator , 2014, Int. J. Bifurc. Chaos.