Further extended sinh-cosh and sin-cos methods and new nontraveling wave solutions of the -dimensional dispersive long wave equations.

In this paper, based on symbolic computation and the further extended sinh- cosh and sin-cos methods, families of non-travelling wave solutions of the (2+1)- dimension dispersive long wave equations are obtained. These solutions include Jacobi elliptic function solution, soliton-like solution, and so on.

[1]  W. Malfliet Solitary wave solutions of nonlinear wave equations , 1992 .

[2]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[3]  M. Boiti,et al.  Spectral transform for a two spatial dimension extension of the dispersive long wave equation , 1987 .

[4]  Hong-qing Zhang,et al.  New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics , 1999 .

[5]  T. Xia,et al.  New Exact Traveling Wave Solutions for Compound KdV-Burgers Equations in Mathematical Physics ∗† , 2002 .

[6]  Xianguo Geng,et al.  Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable , 2002 .

[7]  Zhenya Yan,et al.  Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces , 2001 .

[8]  Wenxiu Ma,et al.  The Hirota-Satsuma Coupled KdV Equation and a Coupled Ito System Revisited , 2000 .

[9]  Chuntao Yan A simple transformation for nonlinear waves , 1996 .

[10]  V. Dubrovsky,et al.  delta -dressing and exact solutions for the (2+1)-dimensional Harry Dym equation , 1994 .

[11]  E. J. Parkes,et al.  Exact solutions to the two-dimensional Korteweg-de Vries-Burgers equation , 1994 .

[12]  Yuri N. Fedorov,et al.  Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians , 2001 .

[13]  Zhenya Yan,et al.  Explicit and exact traveling wave solutions of Whitham–Broer–Kaup shallow water equations , 2001 .

[14]  T. Xia,et al.  New explicit and exact solutions for the Nizhnik-Novikov-Vesselov equation. , 2001 .

[15]  P. G. Estévez Darboux transformation and solutions for an equation in 2+1 dimensions , 1999 .

[16]  Zuntao Fu,et al.  New transformations and new approach to find exact solutions to nonlinear equations , 2002 .