A unified probabilistic framework for robust manifold learning and embedding

This paper focuses on learning a smooth skeleton structure from noisy data—an emerging topic in the fields of computer vision and computational biology. Many dimensionality reduction methods have been proposed, but none are specially designed for this purpose. To achieve this goal, we propose a unified probabilistic framework that directly models the posterior distribution of data points in an embedding space so as to suppress data noise and reveal the smooth skeleton structure. Within the proposed framework, a sparse positive similarity matrix is obtained by solving a box-constrained convex optimization problem, in which the sparsity of the matrix represents the learned neighborhood graph and the positive weights stand for the new similarity. Embedded data points are then obtained by applying the maximum a posteriori estimation to the posterior distribution expressed by the learned similarity matrix. The embedding process naturally provides a probabilistic interpretation of Laplacian eigenmap and maximum variance unfolding. Extensive experiments on various datasets demonstrate that our proposed method obtains the embedded points that accurately uncover inherent smooth skeleton structures in terms of data visualization, and the method yields superior clustering performance compared to various baselines.

[1]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[2]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[3]  René Vidal,et al.  Sparse Manifold Clustering and Embedding , 2011, NIPS.

[4]  Steve Goodison,et al.  Cancer progression modeling using static sample data , 2014, Genome Biology.

[5]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, CVPR.

[6]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[7]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[8]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[9]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[10]  Chad J Creighton,et al.  The molecular profile of luminal B breast cancer , 2012, Biologics : targets & therapy.

[11]  Alex Pentland,et al.  Discriminative, generative and imitative learning , 2002 .

[12]  Adam Krzyzak,et al.  Learning and Design of Principal Curves , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[14]  A. Rukhin Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.

[15]  Neil D. Lawrence,et al.  A Unifying Probabilistic Perspective for Spectral Dimensionality Reduction: Insights and New Models , 2010, J. Mach. Learn. Res..

[16]  A. Nobel,et al.  Supervised risk predictor of breast cancer based on intrinsic subtypes. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[17]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[18]  Ivor W. Tsang,et al.  Dynamic vehicle routing with stochastic requests , 2003, IJCAI 2003.

[19]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[20]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[21]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[22]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[23]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[24]  Ivor W. Tsang,et al.  Flexible Manifold Embedding: A Framework for Semi-Supervised and Unsupervised Dimension Reduction , 2010, IEEE Transactions on Image Processing.

[25]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, International Conference on Artificial Neural Networks.

[26]  Carlo C. Maley,et al.  Clonal evolution in cancer , 2012, Nature.

[27]  Christopher J. C. Burges,et al.  Dimension Reduction: A Guided Tour , 2010, Found. Trends Mach. Learn..

[28]  Le Song,et al.  A dependence maximization view of clustering , 2007, ICML '07.

[29]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[30]  I. Jolliffe Principal Component Analysis , 2002 .

[31]  Kilian Q. Weinberger,et al.  Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization , 2005, AISTATS.

[32]  Kilian Q. Weinberger,et al.  Unsupervised Learning of Image Manifolds by Semidefinite Programming , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[33]  Ivor W. Tsang,et al.  Generalized Multiple Kernel Learning With Data-Dependent Priors , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[34]  J. Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[35]  Mikhail Belkin,et al.  Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.

[36]  T. Hastie,et al.  Principal Curves , 2007 .

[37]  Mikhail Belkin,et al.  Manifold Regularization : A Geometric Framework for Learning from Examples , 2004 .

[38]  LawrenceNeil Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005 .

[39]  Jun Zhu,et al.  Maximum Entropy Discrimination Markov Networks , 2009, J. Mach. Learn. Res..

[40]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[41]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[42]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[43]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[44]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .