Algorithmic Shadow Spectroscopy

We present shadow spectroscopy as a simulator-agnostic quantum algorithm for estimating energy gaps using very few circuit repetitions (shots) and no extra resources (ancilla qubits) beyond performing time evolution and measurements. The approach builds on the fundamental feature that every observable property of a quantum system must evolve according to the same harmonic components: we can reveal them by post-processing classical shadows of time-evolved quantum states to extract a large number of time-periodic signals $N_o\propto 10^8$, whose frequencies correspond to Hamiltonian energy differences with Heisenberg-limited precision. We provide strong analytical guarantees that (a) quantum resources scale as $O(\log N_o)$, while the classical computational complexity is linear $O(N_o)$, (b) the signal-to-noise ratio increases with the number of analysed signals as $\propto \sqrt{N_o}$, and (c) peak frequencies are immune to reasonable levels of noise. Moreover, performing shadow spectroscopy to probe model spin systems and the excited state conical intersection of molecular CH$_2$ in simulation verifies that the approach is intuitively easy to use in practice, robust against gate noise, amiable to a new type of algorithmic-error mitigation technique, and uses orders of magnitude fewer number of shots than typical near-term quantum algorithms -- as low as 10 shots per timestep is sufficient. Finally, we measured a high-quality, experimental shadow spectrum of a spin chain on readily-available IBM quantum computers, achieving the same precision as in noise-free simulations without using any advanced error mitigation.

[1]  Ewout van den Berg,et al.  Evidence for the utility of quantum computing before fault tolerance , 2023, Nature.

[2]  H. C. Nguyen,et al.  Quantum Error Mitigated Classical Shadows , 2024, PRX Quantum.

[3]  I. Rungger,et al.  Anderson impurity solver integrating tensor network methods with quantum computing , 2023, 2304.06587.

[4]  Bálint Koczor,et al.  Can shallow quantum circuits scramble local noise into global white noise? , 2023, Journal of Physics A: Mathematical and Theoretical.

[5]  N. Wiebe,et al.  Improved Accuracy for Trotter Simulations Using Chebyshev Interpolation , 2022, 2212.14144.

[6]  Minh C. Tran,et al.  Measuring Arbitrary Physical Properties in Analog Quantum Simulation , 2022, Physical Review X.

[7]  J. Lykken,et al.  Traversable wormhole dynamics on a quantum processor , 2022, Nature.

[8]  J. McClean,et al.  Quantum error mitigation , 2022, Reviews of Modern Physics.

[9]  Yi-Zhuang You,et al.  Scalable and Flexible Classical Shadow Tomography with Tensor Networks , 2022, Quantum.

[10]  Dong Liu,et al.  Noise-Resilient Phase Estimation with Randomized Compiling. , 2022, Physical review letters.

[11]  William M. Kirby,et al.  Exact and efficient Lanczos method on a quantum computer , 2022, Quantum.

[12]  Joonho Lee,et al.  Matchgate Shadows for Fermionic Quantum Simulation , 2022, 2207.13723.

[13]  Eric R. Anschuetz,et al.  Quantum variational algorithms are swamped with traps , 2022, Nature communications.

[14]  M. Soltanalian,et al.  Quantum Compressive Sensing: Mathematical Machinery, Quantum Algorithms, and Quantum Circuitry , 2022, Applied Sciences.

[15]  Bálint Koczor,et al.  Training Variational Quantum Circuits with CoVaR: Covariance Root Finding with Classical Shadows , 2022, Physical Review X.

[16]  D. Pekker,et al.  Simulating spectroscopy experiments with a superconducting quantum computer , 2022, Physical Review Research.

[17]  S. Benjamin,et al.  Multicore Quantum Computing , 2022, Physical Review Applied.

[18]  F. Brandão,et al.  Random quantum circuits transform local noise into global white noise , 2021, 2111.14907.

[19]  T. Takui,et al.  Quantum Algorithm for Full Configuration Interaction Calculations without Controlled Time Evolutions. , 2021, The journal of physical chemistry letters.

[20]  T. Cubitt,et al.  Phase estimation of local Hamiltonians on NISQ hardware , 2021, New Journal of Physics.

[21]  P. Zoller,et al.  Entanglement Spectroscopy and probing the Li-Haldane Conjecture in Topological Quantum Matter , 2021, Quantum.

[22]  T. Takui,et al.  Bayesian phase difference estimation: a general quantum algorithm for the direct calculation of energy gaps. , 2021, Physical chemistry chemical physics : PCCP.

[23]  M. Motta,et al.  Emerging quantum computing algorithms for quantum chemistry , 2021, WIREs Computational Molecular Science.

[24]  Kh. P. Gnatenko,et al.  Energy levels estimation on a quantum computer by evolution of a physical quantity , 2021, Physics Letters A.

[25]  D. Tew,et al.  Molecular excited state calculations with adaptive wavefunctions on a quantum eigensolver emulation: reducing circuit depth and separating spin states. , 2021, Physical chemistry chemical physics : PCCP.

[26]  Bálint Koczor The dominant eigenvector of a noisy quantum state , 2021, New Journal of Physics.

[27]  K. B. Whaley,et al.  Real-Time Evolution for Ultracompact Hamiltonian Eigenstates on Quantum Hardware , 2021, PRX Quantum.

[28]  John Preskill,et al.  Efficient estimation of Pauli observables by derandomization , 2021, Physical review letters.

[29]  T. Takui,et al.  A quantum algorithm for spin chemistry: a Bayesian exchange coupling parameter calculator with broken-symmetry wave functions , 2020, Chemical science.

[30]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[31]  L. González Quantum Chemistry and Dynamics of Excited States , 2020 .

[32]  Bálint Koczor Exponential Error Suppression for Near-Term Quantum Devices , 2020, Physical Review X.

[33]  Xiao Yuan,et al.  Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation , 2020, Journal of the Physical Society of Japan.

[34]  A. Miyake,et al.  Fermionic Partial Tomography via Classical Shadows. , 2020, Physical review letters.

[35]  P. Zoller,et al.  Entanglement Hamiltonian tomography in quantum simulation , 2020, Nature Physics.

[36]  A. Baczewski,et al.  Evaluating Energy Differences on a Quantum Computer with Robust Phase Estimation. , 2020, Physical review letters.

[37]  Nathan A. Baker,et al.  Toward Quantum Computing for High-Energy Excited States in Molecular Systems: Quantum Phase Estimations of Core-Level States. , 2020, Journal of chemical theory and computation.

[38]  Barnaby van Straaten,et al.  Measurement Cost of Metric-Aware Variational Quantum Algorithms , 2020, PRX Quantum.

[39]  S. Brierley,et al.  Efficient quantum measurement of Pauli operators in the presence of finite sampling error , 2020, Quantum.

[40]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[41]  F. Brandão,et al.  Publisher Correction: Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2020, Nature Physics.

[42]  D. Bacon,et al.  Demonstrating a Continuous Set of Two-Qubit Gates for Near-Term Quantum Algorithms. , 2020, Physical review letters.

[43]  B. Bauer,et al.  Quantum Algorithms for Quantum Chemistry and Quantum Materials Science. , 2020, Chemical reviews.

[44]  S. Benjamin,et al.  Quantum natural gradient generalized to noisy and nonunitary circuits , 2019, Physical Review A.

[45]  S. Benjamin,et al.  QuESTlink—Mathematica embiggened by a hardware-optimised quantum emulator , 2019, Quantum Science and Technology.

[46]  J. Gambetta,et al.  Quantum equation of motion for computing molecular excitation energies on a noisy quantum processor , 2019, Physical Review Research.

[47]  E. Campbell,et al.  Compilation by stochastic Hamiltonian sparsification , 2019, Quantum.

[48]  Zhenyu Cai,et al.  Resource Estimation for Quantum Variational Simulations of the Hubbard Model , 2019, 1910.02719.

[49]  Margaret Martonosi,et al.  $O(N^3)$ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians , 2019, IEEE Transactions on Quantum Engineering.

[50]  Tzu-Ching Yen,et al.  Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. , 2019, Journal of chemical theory and computation.

[51]  Michele Mosca,et al.  Pauli Partitioning with Respect to Gate Sets. , 2019, 1907.07859.

[52]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[53]  Zhenyu Cai,et al.  Mitigating coherent noise using Pauli conjugation , 2019, 1906.06270.

[54]  Ming-Cheng Chen,et al.  Demonstration of Adiabatic Variational Quantum Computing with a Superconducting Quantum Coprocessor. , 2019, Physical review letters.

[55]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[56]  Mathukumalli Vidyasagar,et al.  An Introduction to Compressed Sensing , 2019 .

[57]  Daisuke Shiomi,et al.  Quantum Chemistry on Quantum Computers: A Method for Preparation of Multiconfigurational Wave Functions on Quantum Computers without Performing Post-Hartree–Fock Calculations , 2018, ACS central science.

[58]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[59]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[60]  E. Campbell Random Compiler for Fast Hamiltonian Simulation. , 2018, Physical review letters.

[61]  Ken M. Nakanishi,et al.  Subspace-search variational quantum eigensolver for excited states , 2018, Physical Review Research.

[62]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[63]  Laurent Sanchez-Palencia,et al.  Quantum simulation / Simulation quantique Quantum simulation of the Hubbard model with ultracold fermions in optical lattices , 2018 .

[64]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[65]  Ying Li,et al.  Mitigating algorithmic errors in a Hamiltonian simulation , 2018, Physical Review A.

[66]  Zhenyu Cai,et al.  Constructing Smaller Pauli Twirling Sets for Arbitrary Error Channels , 2018, Scientific Reports.

[67]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[68]  S. Brierley,et al.  Variational Quantum Computation of Excited States , 2018, Quantum.

[69]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[70]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[71]  William A. Sethares,et al.  Measures of generalized magnitude-squared coherence: Differences and similarities , 2018, J. Frankl. Inst..

[72]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[73]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[74]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[75]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[76]  A. L. Kuzemsky Band Theory and Electronic Properties of Solids , 2017 .

[77]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[78]  I. Chuang,et al.  Hamiltonian Simulation by Qubitization , 2016, Quantum.

[79]  I. Chuang,et al.  Optimal Hamiltonian Simulation by Quantum Signal Processing. , 2016, Physical review letters.

[80]  J. Carter,et al.  Hybrid Quantum-Classical Hierarchy for Mitigation of Decoherence and Determination of Excited States , 2016, 1603.05681.

[81]  Nathan Wiebe,et al.  Randomized gap and amplitude estimation , 2016, 1603.03672.

[82]  Andrew Richards,et al.  University of Oxford Advanced Research Computing , 2015 .

[83]  M. Wolf,et al.  Undecidability of the spectral gap , 2015, Nature.

[84]  Andrew M. Childs,et al.  Simulating Hamiltonian dynamics with a truncated Taylor series. , 2014, Physical review letters.

[85]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[86]  F. Alet,et al.  Many-body localization edge in the random-field Heisenberg chain , 2014, 1411.0660.

[87]  David A. Huse,et al.  Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms , 2014, Nature.

[88]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[89]  J. Freericks,et al.  Diabatic ramping spectroscopy of many-body excited states for trapped-ion quantum simulators , 2014, 1402.7357.

[90]  J. Pittner,et al.  Adiabatic state preparation study of methylene. , 2014, The Journal of chemical physics.

[91]  F. Verstraete,et al.  Elementary excitations in gapped quantum spin systems. , 2013, Physical review letters.

[92]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[93]  Adam D. Bookatz QMA-complete problems , 2012, Quantum Inf. Comput..

[94]  S. Mandt,et al.  Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms , 2012, Nature Physics.

[95]  Jay M. Gambetta,et al.  Characterizing Quantum Gates via Randomized Benchmarking , 2011, 1109.6887.

[96]  J. Pittner,et al.  Quantum computing applied to calculations of molecular energies: CH2 benchmark. , 2010, The Journal of chemical physics.

[97]  Ignacio Santamaría,et al.  A generalization of the magnitude squared coherence spectrum for more than two signals: definition, properties and estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[98]  Frank Verstraete,et al.  Quantum circuits for strongly correlated quantum systems , 2008, ArXiv.

[99]  Joseph Emerson,et al.  Scalable protocol for identification of correctable codes , 2007, 0710.1900.

[100]  Ignacio Santamaría,et al.  Estimation of the Magnitude Squared Coherence Spectrum Based on Reduced-Rank Canonical Coordinates , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[101]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[102]  H. Schaefer,et al.  Structures and vibrational frequencies in the full configuration interaction limit: Predictions for four electronic states of methylene using a triple-zeta plus double polarization (TZ2P) basis , 1998 .

[103]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[104]  H. Schaefer,et al.  Methylene: A Paradigm for Computational Quantum Chemistry , 1986, Science.

[105]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[106]  G. Box,et al.  Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models , 1970 .

[107]  S. F. Boys,et al.  Quantum Variational Calculations for a Range of C H 2 Configurations , 1960 .

[108]  Pavel A. Dub,et al.  Equation-of-motion variational quantum eigensolver method for computing molecular excitation energies, ionization potentials, and electron affinities , 2022 .

[109]  W. Marsden I and J , 2012 .

[110]  J. F. Harrison Methylene: A Personal Perspective , 2009 .

[111]  Ignacio Santamarand,et al.  ESTIMATION OF THE MAGNITUDE SQUARED COHERENCE SPECTRUM BASED ON REDUCED-RANK CANONICAL COORDINATES , 2007 .

[112]  J. Singleton Band Theory and Electronic Properties of Solids , 2001 .

[113]  I. Shavitt Geometry and singlet−triplet energy gap in methylene: a critical review of experimental and theoretical determinations , 1985 .

[114]  I. Miyazaki,et al.  AND T , 2022 .