History of PET

There are three major technical components of positron emission tomography (PET): PET scanner, cyclotron production of radiopharmaceuticals, and biological assays of normal and disease processes. A historical perspective from the early development stages through today is given for each of these technology areas, as well as some predictions for the future. Details of the technologies are given on PET scanners and cameras in Chapter 2 and for cyclotron production of radiopharmaceuticals in Chapter 3.

[1]  S S Gambhir,et al.  A tabulated summary of the FDG PET literature. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[2]  M E Phelps,et al.  Positron emission tomography provides molecular imaging of biological processes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Michael E. Phelps,et al.  Electronic Generators for the Production of Positron-Emitter Labeled Radiopharmaceuticals. Where Would PET Be Without Them? , 1999, Clinical positron imaging : official journal of the Institute for Clinical P.E.T.

[4]  M. P. Buchin,et al.  Performance Parameters of a Positron Imaging Camera , 1976, IEEE Transactions on Nuclear Science.

[5]  M E Phelps,et al.  Design and performance characteristics of a whole-body positron transaxial tomograph. , 1976, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  M E Phelps,et al.  ECAT: a new computerized tomographic imaging system for positron-emitting radiopharmaceuticals. , 1978, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[7]  M E Phelps,et al.  Whole-body positron emission tomography: Part I. Methods and performance characteristics. , 1992, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[8]  E. Davies Reconstruction tomography in diagnostic radiology and nuclear medicine , 1978 .

[9]  R. Q. Edwards,et al.  CYLINDRICAL AND SECTION RADIOISOTOPE SCANNING OF THE LIVER AND BRAIN. , 1964, Radiology.

[10]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[11]  M P Sandler,et al.  Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  D. Mankoff,et al.  Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[13]  Paul Kinahan,et al.  A combined PET/CT scanner for clinical oncology. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[14]  R. Nutt,et al.  A Multicrystal Two Dimensional BGO Detector System for Positron Emission Tomography , 1986, IEEE Transactions on Nuclear Science.

[15]  S. Cherry,et al.  Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[17]  Z. Cho,et al.  Bismuth germanate as a potential scintillation detector in positron cameras. , 1977, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[18]  E. Hoffman,et al.  Tomographic measurement of local cerebral glucose metabolic rate in humans with (F‐18)2‐fluoro‐2‐deoxy‐D‐glucose: Validation of method , 1979, Annals of neurology.

[19]  E. Hoffman,et al.  Application of annihilation coincidence detection to transaxial reconstruction tomography. , 1975, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[20]  T. M. Guerrero,et al.  Characterization of a whole body imaging technique for PET , 1990 .

[21]  Ronald H. Huesman,et al.  Imaging Properties of a Positron Tomograph with 280 Bgo Crystals , 1981, IEEE Transactions on Nuclear Science.

[22]  E. Hoffman,et al.  Noninvasive determination of local cerebral metabolic rate of glucose in man. , 1980, The American journal of physiology.

[23]  Simon R. Cherry,et al.  The Changing Design of Positron Imaging Systems. , 1998, Clinical positron imaging : official journal of the Institute for Clinical P.E.T.

[24]  Gordon L. Brownell,et al.  A Multi-Crystal Positron Camera , 1972 .

[25]  A. Cormack Reconstruction of densities from their projections, with applications in radiological physics. , 1973, Physics in medicine and biology.

[26]  A. Alavi,et al.  The [18F]Fluorodeoxyglucose Method for the Measurement of Local Cerebral Glucose Utilization in Mane , 1979, Circulation research.

[27]  S. Cherry,et al.  Performance evaluation of microPET: a high-resolution lutetium oxyorthosilicate PET scanner for animal imaging. , 1999, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[28]  E. J. Hoffman,et al.  ECAT III -- Basic Design Considerations , 1983, IEEE Transactions on Nuclear Science.

[29]  J. K. Chan,et al.  Circular Ring Transverse Axial Positron Camera for 3-Dimensional Reconstruction of Radionuclides Distribution , 1976, IEEE Transactions on Nuclear Science.

[30]  P. Shreve Adding structure to function. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  H. G. Jackson,et al.  High Resolution Computed Tomography of Positron Emitters , 1976, IEEE Transactions on Nuclear Science.

[32]  M. Phelps,et al.  PET: the merging of biology and imaging into molecular imaging. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[33]  J. Patton Instrumentation for coincidence imaging with multihead scintillation cameras. , 2000, Seminars in nuclear medicine.

[34]  R. Blasberg,et al.  Imaging adenoviral-mediated herpes virus thymidine kinase gene transfer and expression in vivo. , 1999, Cancer research.

[35]  S. Derenzo Monte Carlo Calculations of the Detection Efficiency of Arrays of Nai(Tl), Bgo, Csf, Ge, and Plastic Detectors for 511 Kev Photons , 1981, IEEE Transactions on Nuclear Science.

[36]  James F. Young,et al.  MicroPET: a high resolution PET scanner for imaging small animals , 1996, IEEE Nuclear Science Symposium Conference Record.

[37]  Otto Muzik,et al.  Imaging proliferation in vivo with [F-18]FLT and positron emission tomography , 1998, Nature Medicine.

[38]  Magnus Dahlbom,et al.  Investigation of LSO crystals for high spatial resolution positron emission tomography , 1996 .

[39]  Michael E. Phelps,et al.  Design Considerations for a Positron Emission Transaxial Tomograph (PETT III) , 1976, IEEE Transactions on Nuclear Science.

[40]  G. Woodward,et al.  The effect of 2-desoxy-D-glucose on glycolysis and respiration of tumor and normal tissues. , 1954, Cancer research.

[41]  M. Reivich,et al.  Labeled 2-deoxy-D-glucose analogs. 18F-labeled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and 14C-2-deoxy-2-fluoro-D-glucose , 1978 .