Compressive behaviors and mechanisms of TiB whiskers reinforced high temperature Ti60 alloy matrix composites

[1]  Wang Bingzhu,et al.  Effects of heat treatments on microstructure and tensile properties of as-extruded TiBw/near-α Ti composites , 2015 .

[2]  H. Hu,et al.  Effects of deformation conditions on the microstructure and substructure evolution of TiBw/Ti60 composite with network structure , 2015 .

[3]  J. Jonas,et al.  Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions , 2014 .

[4]  Wang Bingzhu,et al.  Hot compression characteristics of TiBw/Ti6Al4V composites with novel network microstructure using processing maps , 2013 .

[5]  W. Zeng,et al.  Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map , 2013 .

[6]  James C. Williams,et al.  Perspectives on Titanium Science and Technology , 2013 .

[7]  S. Suwas,et al.  The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti–6Al–4V–0.1B , 2013 .

[8]  Di Zhang,et al.  Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites , 2012 .

[9]  R. Srinivasan,et al.  Microstructure and Texture Evolution During β Extrusion of Boron Modified Ti–6Al–4V Alloy , 2012 .

[10]  Miaoquan Li,et al.  Strain rate sensitivity and strain hardening exponent during the isothermal compression of Ti60 alloy , 2012 .

[11]  Yu Sun,et al.  Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map , 2011 .

[12]  W. Zeng,et al.  Research on the hot deformation behavior of Ti40 alloy using processing map , 2011 .

[13]  Jingwei Zhao,et al.  Influence of hydrogen content on hot deformation behavior and microstructural evolution of Ti600 alloy , 2010 .

[14]  C. Poletti,et al.  Processing maps of Ti662 unreinforced and reinforced with TiC particles according to dynamic models , 2008 .

[15]  Tae Jin Shin,et al.  An Improved Process Design for the Hot Backward Extrusion of Ti-6Al-4V Tubes Using a Finite Element Method and Continuum Instability Criterion , 2007 .

[16]  Di Zhang,et al.  Hot deformation behavior of in situ synthesized Ti-1100 composite reinforced with 5 vol.% TiC particles , 2006 .

[17]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[18]  S. Gorsse,et al.  Mechanical properties of Ti-6Al-4V/TiB composites with randomly oriented and aligned TiB reinforcements , 2003 .

[19]  Jong-Taek Yeom,et al.  Characterization of deformation stability in hot forging of conventional Ti–6Al–4V using processing maps , 2002 .

[20]  Y. V. R. K. Prasad,et al.  Processing maps for hot working of titanium alloys , 1998 .

[21]  Chi Feng Lin,et al.  High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests , 1998 .

[22]  Y. Prasad,et al.  Modelling of hot deformation for microstructural control , 1998 .

[23]  H. Mcqueen,et al.  New method for determining sinh constitutive constants for high temperature deformation of 300 austenitic steels , 1992 .

[24]  R. J. Arsenault,et al.  The effect of volume per cent of phase on the high temperature tensile deformation of two-phase TiMn alloys , 1989 .