Towards alignment strategies in human-agent interactions based on measures of lexical repetitions

Alignment of communicative behaviour is an important feature of Human-Human interaction that directly affects the collaboration and the social connection of conversational partners. With the aim of improving virtual agent communicative capabilities, and in particular its strategies related to (lexical) verbal alignment, this article focuses on the alignment of linguistic productions of dialogue participants in task-oriented dialogues. We propose a new framework to quantify both the lexical alignment and the self-repetition behaviours of dialogue participants from dyadic dialogue transcripts. It involves easily computable measures based on repetition of lexical patterns automatically extracted via a sequential pattern mining approach. These measures allow the characterisation of the nature of these processes by addressing various informative aspects

[1]  Amanda Stent,et al.  Lexical and Syntactic Adaptation and Their Impact in Deployed Spoken Dialog Systems , 2009, NAACL.

[2]  Marilyn A. Walker,et al.  Entrainment in Pedestrian Direction Giving: How Many Kinds of Entrainment? , 2014, IWSDS.

[3]  Amanda Stent,et al.  Measuring Adaptation Between Dialogs , 2007, SIGdial.

[4]  Alexander I. Rudnicky,et al.  A Wizard-of-Oz Study on A Non-Task-Oriented Dialog Systems That Reacts to User Engagement , 2016, SIGDIAL Conference.

[5]  Roxane Bertrand,et al.  French Face-to-Face Interaction: Repetition as a Multimodal Resource , 2013 .

[6]  Penelope Brown,et al.  Politeness: Some Universals in Language Usage , 1989 .

[7]  Dirk Heylen,et al.  Measuring prosodic alignment in cooperative task-based conversations , 2012, INTERSPEECH.

[8]  Catherine Pelachaud,et al.  An ECA expressing appreciations , 2015, 2015 International Conference on Affective Computing and Intelligent Interaction (ACII).

[9]  Mohamed Chetouani,et al.  Interpersonal Synchrony: A Survey of Evaluation Methods across Disciplines , 2012, IEEE Transactions on Affective Computing.

[10]  Isabelle Hupont,et al.  Computational Study of Primitive Emotional Contagion in Dyadic Interactions , 2020, IEEE Transactions on Affective Computing.

[11]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[12]  Susannah B. F. Paletz,et al.  Lexical entrainment and success in student engineering groups , 2012, 2012 IEEE Spoken Language Technology Workshop (SLT).

[13]  J. Mills,et al.  Experimental social psychology , 1972 .

[14]  M. Pickering,et al.  Linguistic alignment between people and computers , 2010 .

[15]  Eduardo Coutinho,et al.  Ask Alice: an artificial retrieval of information agent , 2016, ICMI.

[16]  Timothy W. Bickmore,et al.  MAINTAINING ENGAGEMENT IN LONG-TERM INTERVENTIONS WITH RELATIONAL AGENTS , 2010, Appl. Artif. Intell..

[17]  Stefan Kopp,et al.  Modelling and Evaluation of Lexical and Syntactic Alignment with a Priming-Based Microplanner , 2010, Empirical Methods in Natural Language Generation.

[18]  Alexander I. Rudnicky,et al.  Stochastic Language Generation for Spoken Dialogue Systems , 2000 .

[19]  P. Healey,et al.  Self-Repetition in Dialogue and Monologue , 2018 .

[20]  M. González Politeness: some universals in language usage , 1995 .

[21]  D. Tannen Talking Voices: Repetition, Dialogue, and Imagery in Conversational Discourse , 1989 .

[22]  M. Pickering,et al.  Toward a mechanistic psychology of dialogue , 2004, Behavioral and Brain Sciences.

[23]  John C. Mazziotta,et al.  Mirroring others' emotions relates to empathy and interpersonal competence in children , 2008, NeuroImage.

[24]  J. Pennebaker,et al.  Linguistic Style Matching in Social Interaction , 2002 .

[25]  Maxine Eskénazi,et al.  From rule-based to data-driven lexical entrainment models in spoken dialog systems , 2015, Comput. Speech Lang..

[26]  Arne Jönsson,et al.  Wizard of Oz studies -- why and how , 1993, Knowl. Based Syst..

[27]  Johanna D. Moore,et al.  Computational Modelling of Structural Priming in Dialogue , 2006, NAACL.

[28]  Marilyn A. Walker,et al.  Controlling User Perceptions of Linguistic Style: Trainable Generation of Personality Traits , 2011, CL.

[29]  David DeVault,et al.  Toward Natural Turn-Taking in a Virtual Human Negotiation Agent , 2015, AAAI Spring Symposia.

[30]  Guillaume Dubuisson Duplessis,et al.  Automatic Measures to Characterise Verbal Alignment in Human-Agent Interaction , 2017, SIGDIAL Conference.

[31]  Zoraida Callejas Carrión,et al.  Sentiment Analysis: From Opinion Mining to Human-Agent Interaction , 2016, IEEE Transactions on Affective Computing.

[32]  D. Tannen Talking voices: Author index , 2007 .

[33]  P. Healey,et al.  Divergence in Dialogue , 2014, PloS one.

[34]  Diane J. Litman,et al.  Automatically measuring lexical and acoustic/prosodic convergence in tutorial dialog corpora , 2007, SLaTE.

[35]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences: Contents , 1997 .

[36]  Arthur C. Graesser,et al.  AutoTutor and affective autotutor: Learning by talking with cognitively and emotionally intelligent computers that talk back , 2012, TIIS.

[37]  Riccardo Fusaroli,et al.  Analyzing Social Interactions: The Promises and Challenges of Using Cross Recurrence Quantification Analysis , 2014 .

[38]  John F. Roddick,et al.  Sequential pattern mining -- approaches and algorithms , 2013, CSUR.

[39]  Jan L. Svennevig,et al.  Other-repetition as display of hearing, understanding and emotional stance , 2004 .

[40]  Susan E. Brennan,et al.  LEXICAL ENTRAINMENT IN SPONTANEOUS DIALOG , 1996 .

[41]  H. H. Clark,et al.  Conceptual pacts and lexical choice in conversation. , 1996 .

[42]  Julia Hirschberg,et al.  High Frequency Word Entrainment in Spoken Dialogue , 2008, ACL.

[43]  Kenneth Ward Church Empirical Estimates of Adaptation: The chance of Two Noriegas is closer to p/2 than p2 , 2000, COLING.

[44]  Kathrin Lambertz,et al.  Back-channelling: The use of yeah and mm to portray engaged listenership , 2011 .

[45]  Joelle Pineau,et al.  A Survey of Available Corpora for Building Data-Driven Dialogue Systems , 2015, Dialogue Discourse.

[46]  Ning Wang,et al.  The politeness effect: Pedagogical agents and learning outcomes , 2008, Int. J. Hum. Comput. Stud..

[47]  Chloé Clavel,et al.  Comparative analysis of verbal alignment in human-human and human-agent interactions , 2014, LREC.

[48]  Chloé Clavel,et al.  Improving social relationships in face-to-face human-agent interactions: when the agent wants to know user's likes and dislikes , 2015, ACL.

[49]  Dan Gusfield,et al.  Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[50]  Dirk Heylen,et al.  HAI Alice - An Information-Providing Closed-Domain Dialog Corpus , 2018, LREC 2018.

[51]  Guillaume Dubuisson Duplessis,et al.  Utterance Retrieval Based on Recurrent Surface Text Patterns , 2017, ECIR.

[52]  David Griol,et al.  Modeling the user state for context-aware spoken interaction in ambient assisted living , 2014, Applied Intelligence.

[53]  Charles L. Briggs Talking Voices: Repetition, Dialogue, and Imagery in Conversational Discourse. Deborah Tannen , 1991 .

[54]  Ramón López-Cózar,et al.  Predicting user mental states in spoken dialogue systems , 2011, EURASIP J. Adv. Signal Process..

[55]  Dan Gusfield Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology , 1997 .

[56]  Ondrej Dusek,et al.  A Context-aware Natural Language Generator for Dialogue Systems , 2016, SIGDIAL Conference.

[57]  Justine Cassell,et al.  We Click, We Align, We Learn: Impact of Influence and Convergence Processes on Student Learning and Rapport Building , 2015, INTERPERSONAL@ICMI.

[58]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[59]  Maxine Eskénazi,et al.  Lexical entrainment of real users in the let's go spoken dialog system , 2010, INTERSPEECH.

[60]  David DeVault,et al.  The Benefits of Virtual Humans for Teaching Negotiation , 2016, IVA.

[61]  Arne Jönsson,et al.  Wizard of Oz studies: why and how , 1993, IUI '93.

[62]  Catherine Pelachaud,et al.  "I like this painting too": When an ECA Shares Appreciations to Engage Users , 2015, AAMAS.

[63]  Ondrej Dusek,et al.  A Context-aware Natural Language Generation Dataset for Dialogue Systems , 2016 .

[64]  Timothy W. Bickmore,et al.  Maintaining reality: Relational agents for antipsychotic medication adherence , 2010, Interact. Comput..

[65]  Susan Brennan,et al.  Entrainment on the Move and in the Lab: The Walking Around Corpus , 2013, CogSci.

[66]  Ludovic Lebart,et al.  Exploring Textual Data , 1997 .

[67]  H. Giles,et al.  Communication accommodation theory: A look back and a look ahead , 2005 .

[68]  Mariët Theune,et al.  Politeness and alignment in dialogues with a virtual guide , 2008, AAMAS.

[69]  Susan Brennan,et al.  Partner-Specific Adaptation in Dialog , 2009, Top. Cogn. Sci..

[70]  Riccardo Fusaroli,et al.  Investigating Conversational Dynamics: Interactive Alignment, Interpersonal Synergy, and Collective Task Performance , 2016, Cogn. Sci..

[71]  Catherine Pelachaud,et al.  Politeness versus Perceived Engagement: an Experimental Study , 2014, NLPCS 2014.

[72]  Stefan Kopp,et al.  A Conversational Agent as Museum Guide - Design and Evaluation of a Real-World Application , 2005, IVA.