Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects.

Recent explosion of interest in two-dimensional (2D) materials research has led to extensive exploration of physical and chemical phenomena unique to this new class of materials and their technological potential. Atomically thin layers of group 6 transition metal dichalcogenides (TMDs) such as MoS2 and WSe2 are remarkably stable semiconductors that allow highly efficient electrostatic control due to their 2D nature. Field effect transistors (FETs) based on 2D TMDs are basic building blocks for novel electronic and chemical sensing applications. Here, we review the state-of-the-art of TMD-based FETs and summarize the current understanding of interface and surface effects that play a major role in these systems. We discuss how controlled doping is key to tailoring the electrical response of these materials and realizing high performance devices. The first part of this review focuses on some fundamental features of gate-modulated charge transport in 2D TMDs. We critically evaluate the role of surfaces and interfaces based on the data reported in the literature and explain the observed discrepancies between the experimental and theoretical values of carrier mobility. The second part introduces various non-covalent strategies for achieving desired doping in these systems. Gas sensors based on charge transfer doping and electrostatic stabilization are introduced to highlight progress in this direction. We conclude the review with an outlook on the realization of tailored TMD-based field-effect devices through surface and interface chemistry.

[1]  Band-like transport in high mobility unencapsulated single-layer MoS 2 transistors , 2013, 1304.5567.

[2]  Zhixian Zhou,et al.  Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. , 2013, ACS nano.

[3]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[4]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[5]  F. Miao,et al.  Hopping transport through defect-induced localized states in molybdenum disulphide , 2013, Nature Communications.

[6]  M. Aono,et al.  Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2(0001), Followed by Vacancy Repair via S–C Dissociation , 2012 .

[7]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[8]  A. Daugaard,et al.  Spatially Selective Functionalization of Conducting Polymers by “Electroclick” Chemistry , 2009 .

[9]  Yao Guo,et al.  Study on the resistance distribution at the contact between molybdenum disulfide and metals. , 2014, ACS nano.

[10]  Zhenhua Ni,et al.  Engineering the Electronic Structure of Graphene , 2012, Advanced materials.

[11]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[12]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[13]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[14]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[15]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[16]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[17]  Christian Kloc,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[18]  Madan Dubey,et al.  Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition , 2013 .

[19]  C. Battaglia,et al.  MoS 2 P ‐ type Transistors and Diodes Enabled by High Work Function MoO x Contacts , 2014 .

[20]  D. Murphy,et al.  Convenient preparation and physical properties of lithium intercalation compounds of Group 4B and 5B layered transition metal dichalcogenides , 1976 .

[21]  Bo Liu,et al.  High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide , 2014, Nature Communications.

[22]  Heather K Hunt,et al.  Label-free biological and chemical sensors. , 2010, Nanoscale.

[23]  I. Choi,et al.  Surface reactions on demand: electrochemical control of SAM-based reactions. , 2006, Angewandte Chemie.

[24]  Chongwu Zhou,et al.  High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. , 2014, ACS nano.

[25]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[26]  R. Lieth Preparation and Crystal Growth of Materials with Layered Structures , 1977 .

[27]  Takashi Taniguchi,et al.  Lateral MoS2 p-n junction formed by chemical doping for use in high-performance optoelectronics. , 2014, ACS nano.

[28]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[29]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[30]  Fei Wang,et al.  Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. , 2014, ACS nano.

[31]  G. Yeom,et al.  Graphene doping methods and device applications. , 2014, Journal of nanoscience and nanotechnology.

[32]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[33]  Andras Kis,et al.  Electron and hole mobilities in single-layer WSe2. , 2014, ACS nano.

[34]  Zhiqiang Gao,et al.  Nanostructure-based electrical biosensors , 2009 .

[35]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[36]  Zhiyuan Zeng,et al.  Electrochemically reduced single-layer MoS₂ nanosheets: characterization, properties, and sensing applications. , 2012, Small.

[37]  E. Tutuc,et al.  Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers , 2012 .

[38]  R. Somoano,et al.  Superconductivity in Intercalated Molybdenum Disulfide , 1972 .

[39]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[40]  G. Eda,et al.  Conducting MoS₂ nanosheets as catalysts for hydrogen evolution reaction. , 2013, Nano letters.

[41]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[42]  Wei Chen,et al.  Modulating electronic transport properties of MoS2 field effect transistor by surface overlayers , 2013 .

[43]  J. Cheon,et al.  Unveiling chemical reactivity and structural transformation of two-dimensional layered nanocrystals. , 2013, Journal of the American Chemical Society.

[44]  Lain‐Jong Li,et al.  Large-area synthesis of highly crystalline WSe(2) monolayers and device applications. , 2014, ACS nano.

[45]  Jeffrey Schwartz,et al.  Easy and efficient bonding of biomolecules to an oxide surface of silicon. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[46]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[47]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[48]  Gregory F. Payne,et al.  Reagentless Protein Assembly Triggered by Localized Electrical Signals , 2009 .

[49]  Yu Zhang,et al.  Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. , 2013, ACS nano.

[50]  Jing Kong,et al.  Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. , 2014, Nature communications.

[51]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[52]  H. Schmidt,et al.  Large thermoelectricity via variable range hopping in chemical vapor deposition grown single-layer MoS2. , 2014, Nano letters.

[53]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[54]  Yi Liu,et al.  Controlled Scalable Synthesis of Uniform, High-Quality Monolayer and Few-layer MoS2 Films , 2013, Scientific Reports.

[55]  Dirk M. Guldi,et al.  Carbon nanotubes--electronic/electrochemical properties and application for nanoelectronics and photonics. , 2009, Chemical Society reviews.

[56]  A Castellanos-Gomez,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[57]  L. Zhen,et al.  Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. , 2013, ACS nano.

[58]  Wenhui Wang,et al.  Strong photoluminescence enhancement of MoS(2) through defect engineering and oxygen bonding. , 2014, ACS nano.

[59]  Li-Min Wang,et al.  Bandgap, mid-gap states, and gating effects in MoS2. , 2014, Nano letters.

[60]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[61]  Christopher M.A. Brett,et al.  Electrochemistry: Principles, Methods, and Applications , 1993 .

[62]  Kyeongjae Cho,et al.  Metal contacts on physical vapor deposited monolayer MoS2. , 2013, ACS nano.

[63]  Lei Liu,et al.  Electric control of spin in monolayer WSe2 field effect transistors , 2013, Nanotechnology.

[64]  Magneto-transport in MoS2: phase coherence, spin-orbit scattering, and the hall factor. , 2013, ACS nano.

[65]  H. Schäfer Chemical Transport Reactions , 2013 .

[66]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[67]  S. Morrison,et al.  Thin oriented films of molybdenum disulphide , 1990 .

[68]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[69]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[70]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[71]  A. Javey,et al.  Air-stable surface charge transfer doping of MoS₂ by benzyl viologen. , 2014, Journal of the American Chemical Society.

[72]  K. Tsukagoshi,et al.  Thickness-dependent interfacial Coulomb scattering in atomically thin field-effect transistors. , 2013, Nano letters.

[73]  M. Chehimi,et al.  Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. , 2011, Chemical Society reviews.

[74]  Gengfeng Zheng,et al.  Nanowire sensors for medicine and the life sciences. , 2006, Nanomedicine.

[75]  M. Armstrong,et al.  Evaluating the performance of nanostructured materials as lithium-ion battery electrodes , 2013, Nano Research.

[76]  J. Kong,et al.  Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition , 2012, 2012 International Electron Devices Meeting.

[77]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[78]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[79]  Michael S. Fuhrer,et al.  High mobility ambipolar MoS2 field-effect transistors: Substrate and dielectric effects , 2012, 1212.6292.

[80]  J. Fischer Chemical doping of single-wall carbon nanotubes. , 2002, Accounts of chemical research.

[81]  Lain-Jong Li,et al.  Flexible and stretchable thin-film transistors based on molybdenum disulphide. , 2014, Physical chemistry chemical physics : PCCP.

[82]  Jun Lou,et al.  Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. , 2013, Nature materials.

[83]  Transport properties of a potassium-doped single-wall carbon nanotube rope , 2000 .

[84]  Michael Grätzel,et al.  Dye-Sensitized Core−Shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide , 2002 .

[85]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[86]  Thomas H. Bointon,et al.  Electron transport of WS2 transistors in a hexagonal boron nitride dielectric environment , 2014, Scientific Reports.

[87]  J. Grossman,et al.  Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons , 2013, Scientific Reports.

[88]  O. Kolosov,et al.  Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates , 2013, Scientific Reports.

[89]  R.M.C. de Almeida,et al.  Reaction–diffusion in high-k dielectrics on Si , 2003 .

[90]  Limin Jin,et al.  Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals , 2013, Scientific Reports.

[91]  R. Frindt,et al.  Single Crystals of MoS2 Several Molecular Layers Thick , 1966 .

[92]  Richard H. Friend,et al.  Electronic properties of intercalation complexes of the transition metal dichalcogenides , 1987 .

[93]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[94]  Yi Cui,et al.  Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. , 2014, ACS nano.

[95]  Kevin M. Chen,et al.  Air stable n-doping of WSe2 by silicon nitride thin films with tunable fixed charge density , 2014 .

[96]  P. Kim,et al.  Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. , 2010, Physical review letters.

[97]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[98]  Mesoscale imperfections in MoS2 atomic layers grown by a vapor transport technique. , 2014, Nano letters.

[99]  Electric-field screening in atomically thin layers of MoS₂: the role of interlayer coupling. , 2012, Advanced materials.

[100]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[101]  Lain-Jong Li,et al.  Highly flexible MoS2 thin-film transistors with ion gel dielectrics. , 2012, Nano letters.

[102]  P. Kim,et al.  Multiband transport in bilayer graphene at high carrier densities , 2011, 1106.0035.

[103]  M. Batzill The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects , 2012 .

[104]  Pablo Jarillo-Herrero,et al.  Two-dimensional crystals: phosphorus joins the family. , 2014, Nature nanotechnology.

[105]  James Hone,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[106]  A. M. van der Zande,et al.  Chemical vapor deposition-derived graphene with electrical performance of exfoliated graphene. , 2012, Nano letters.

[107]  Peide D. Ye,et al.  Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors , 2014 .

[108]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[109]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .

[110]  Ying-Sheng Huang,et al.  Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. , 2014, Nature nanotechnology.

[111]  Kazuhito Tsukagoshi,et al.  Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits , 2014, Advanced materials.

[112]  Wei Chen,et al.  Manipulating the electronic and chemical properties of graphene via molecular functionalization , 2013 .

[113]  Helmuth Berger,et al.  Mono- and bilayer WS2 light-emitting transistors. , 2014, Nano letters.

[114]  W. Jaegermann,et al.  Li intercalation across and along the van der Waals surfaces of MoS2(0001) , 1995 .

[115]  X. Duan,et al.  Chemical vapor deposition growth of monolayer MoSe2 nanosheets , 2014, Nano Research.

[116]  Kenji Watanabe,et al.  Suppression of thermally activated carrier transport in atomically thin MoS2 on crystalline hexagonal boron nitride substrates. , 2013, Nanoscale.

[117]  D. Stanbury,et al.  Kinetics and equilibria for reactions of the hexachloroiridate redox couple in nitrous acid , 1985 .

[118]  Yan Xin,et al.  Ambipolar molybdenum diselenide field-effect transistors: field-effect and Hall mobilities. , 2014, ACS nano.

[119]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[120]  Ying-Sheng Huang,et al.  Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. , 2014, Advanced materials.

[121]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[122]  L. Giordano,et al.  Oxide films at the nanoscale: new structures, new functions, and new materials. , 2011, Accounts of chemical research.

[123]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[124]  Ulrich S Schubert,et al.  Chemical modification of self-assembled silane based monolayers by surface reactions. , 2010, Chemical Society reviews.

[125]  R. Tenne,et al.  Study on preparation, growth mechanism, and optoelectronic properties of highly oriented WSe_2 thin films , 2000 .

[126]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2 , 1997 .

[127]  Francisco Guinea,et al.  Local strain engineering in atomically thin MoS2. , 2013, Nano letters.

[128]  Quantitative Raman spectrum and reliable thickness identification for atomic layers on insulating substrates. , 2012, ACS nano.

[129]  M. Kanatzidis,et al.  Exfoliated-Restacked Phase of WS2. , 1997 .

[130]  R. B. Murray,et al.  The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials , 1972 .

[131]  Weiwei Zhao,et al.  Layer-by-layer thinning of MoS2 by plasma. , 2013, ACS nano.

[132]  Bandgap and doping effects in MoS2 measured by Scanning Tunneling Microscopy and Spectroscopy , 2014, 1405.2367.

[133]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[134]  Jae Gyeong Lee,et al.  Hydrogen-atom-mediated electrochemistry , 2013, Nature Communications.

[135]  R. Somoano,et al.  SUPERCONDUCTIVITY IN INTERCALATED MOLYBDENUM DISULFIDE. , 1971 .

[136]  H. Schmidt,et al.  Charge transport in ion-gated mono-, bi-, and trilayer MoS2 field effect transistors , 2014, Scientific Reports.

[137]  T. E. Hartman,et al.  Electron Tunneling Through Thin Aluminum Oxide Films , 1964 .

[138]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[139]  A. Morpurgo,et al.  Accessing the transport properties of graphene and its multilayers at high carrier density , 2010, Proceedings of the National Academy of Sciences.

[140]  N. Koch,et al.  Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. , 2003, Journal of the American Chemical Society.

[141]  Xiaodong Xu,et al.  Systematic Doping Control of CVD Graphene Transistors with Functionalized Aromatic Self‐Assembled Monolayers , 2014 .

[142]  Rein V. Ulijn,et al.  Reversible Electroaddressing of Self‐assembling Amino‐Acid Conjugates , 2011 .

[143]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[144]  Y. J. Zhang,et al.  Superconducting Dome in a Gate-Tuned Band Insulator , 2012, Science.

[145]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[146]  O. Pirrotta,et al.  Leakage current through the poly-crystalline HfO2: Trap densities at grains and grain boundaries , 2013 .

[147]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[148]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[149]  Zhixian Zhou,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[150]  Gengfeng Zheng,et al.  Silicon Nanowires for Biosensing, Energy Storage, and Conversion , 2013 .

[151]  Xinran Wang,et al.  Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances , 2012 .

[152]  L. Chu,et al.  Wet chemical thinning of molybdenum disulfide down to its monolayer , 2014 .

[153]  G. Eda,et al.  An innovative way of etching MoS2: Characterization and mechanistic investigation , 2013, Nano Reseach.

[154]  Xi Chen,et al.  Control of relative tunneling rates in single molecule bipolar electron transport. , 2004, Physical review letters.

[155]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[156]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[157]  Pawel Hawrylak,et al.  Electronic structure of a single MoS2 monolayer , 2012 .

[158]  G. Steele,et al.  Folded MoS2 layers with reduced interlayer coupling , 2013, Nano Research.

[159]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[160]  Paula M Mendes,et al.  Stimuli-responsive surfaces for bio-applications. , 2008, Chemical Society reviews.

[161]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[162]  Bin Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[163]  Ashish Arora,et al.  Indirect-to-direct band gap crossover in few-layer MoTe₂. , 2015, Nano letters.

[164]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[165]  Yoshihiro Iwasa,et al.  Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. , 2013, Nano letters.

[166]  Boris I. Yakobson,et al.  Vapor Phase Growth and Grain Boundary Structure of Molybdenum Disulfide Atomic Layers , 2013 .

[167]  G. Eda,et al.  Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. , 2015, Accounts of chemical research.

[168]  S. Palacin,et al.  The in situ characterization and structuring of electrografted polyphenylene films on silicon surfaces. An AFM and XPS study. , 2008, Journal of colloid and interface science.

[169]  Haotian Wang,et al.  Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction , 2013, Proceedings of the National Academy of Sciences.

[170]  A. Ulman,et al.  Formation and Structure of Self-Assembled Monolayers. , 1996, Chemical reviews.

[171]  H. Tan,et al.  Atomic layer deposition of a MoS₂ film. , 2014, Nanoscale.

[172]  Huaqiang Wu,et al.  Graphene mobility enhancement by organosilane interface engineering , 2013 .

[173]  R. Wallace,et al.  Atomic Layer Deposition of a High-k Dielectric on MoS2 Using Trimethylaluminum and Ozone , 2014, ACS applied materials & interfaces.

[174]  Xuedong Bai,et al.  Atomic mechanism of dynamic electrochemical lithiation processes of MoS₂ nanosheets. , 2014, Journal of the American Chemical Society.

[175]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[176]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[177]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[178]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[179]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[180]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[181]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[182]  P. Ciambelli,et al.  A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M═Mo, W) , 2011 .

[183]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[184]  D. Jena,et al.  Charge Scattering and Mobility in Atomically Thin Semiconductors , 2013, 1310.7157.

[185]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[186]  P. Ajayan,et al.  Electrical transport properties of polycrystalline monolayer molybdenum disulfide. , 2014, ACS nano.

[187]  Rajeev Kumar,et al.  Transport properties of monolayer MoS2 grown by chemical vapor deposition. , 2014, Nano letters.

[188]  Yi Cheng,et al.  Electroaddressing agarose using Fmoc-phenylalanine as a temporary scaffold. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[189]  John A. Rogers,et al.  Buckled and Wavy Ribbons of GaAs for High‐Performance Electronics on Elastomeric Substrates , 2006 .

[190]  D. Castner,et al.  Structure and order of phosphonic acid-based self-assembled monolayers on Si(100). , 2010, Langmuir : the ACS journal of surfaces and colloids.

[191]  Chunhai Fan,et al.  Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. , 2013, Journal of the American Chemical Society.

[192]  M. Dines Lithium intercalation via n-Butyllithium of the layered transition metal dichalcogenides , 1975 .

[193]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[194]  Lain-Jong Li,et al.  Large-Area Aiming Synthesis of WSe2 Monolayers , 2013, 1304.7365.

[195]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[196]  E. Williams,et al.  Charged Impurity Scattering in Graphene , 2007, 0708.2408.

[197]  H. Wen,et al.  Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. , 2013, Nano letters.

[198]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[199]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[200]  A. H. Castro Neto,et al.  Electric field effect in ultrathin black phosphorus , 2014 .

[201]  N. Devaraj,et al.  Selective functionalization of independently addressed microelectrodes by electrochemical activation and deactivation of a coupling catalyst. , 2006, Journal of the American Chemical Society.

[202]  P. Ye,et al.  Molecular Doping of Multilayer ${\rm MoS}_{2}$ Field-Effect Transistors: Reduction in Sheet and Contact Resistances , 2013, IEEE Electron Device Letters.

[203]  U. Waghmare,et al.  Charge-transfer interaction between few-layer MoS2 and tetrathiafulvalene. , 2013, Chemistry, an Asian journal.

[204]  Helmuth Berger,et al.  Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. , 2012, Nano letters.

[205]  Zhixian Zhou,et al.  Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. , 2014, ACS nano.

[206]  H. Tributsch,et al.  Photoelectrochemical studies on the n-MoS2–Cysteine interaction , 2006 .

[207]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[208]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[209]  L. Dai Functionalization of graphene for efficient energy conversion and storage. , 2013, Accounts of chemical research.

[210]  A. Lerf Layered Transition Metal Dichalcogenides , 2007 .

[211]  Mengwei Si,et al.  Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films. , 2013, Nano letters.

[212]  R. Gorbachev Van der Waals heterostructures , 2014, Nature Reviews Methods Primers.

[213]  K. Thygesen,et al.  Acoustic phonon limited mobility in two-dimensional semiconductors: Deformation potential and piezoelectric scattering in monolayer MoS 2 from first principles , 2012, 1206.2003.

[214]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[215]  Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. , 2014, Nature communications.

[216]  Mobility enhancement and highly efficient gating of monolayer MoS 2 transistors with polymer electrolyte , 2012, 1207.4824.

[217]  J. Pinson,et al.  Electrografting: a powerful method for surface modification. , 2011, Chemical Society reviews.