Unsupervised learning in second-order neural networks for motion analysis

This paper demonstrates how unsupervised learning based on Hebb-like mechanisms is sufficient for training second-order neural networks to perform different types of motion analysis. The paper studies the convergence properties of the network in several conditions, including different levels of noise and motion coherence and different network configurations. We demonstrate the effectiveness of a novel variability dependent learning mechanism, which allows the network to learn under conditions of large feature similarity thresholds, which is crucial for noise robustness. The paper demonstrates the particular relevance of second-order neural networks and therefore correlation based approaches as contributing mechanisms for directional selectivity in the retina.

[1]  F. Amthor,et al.  Dendritic architecture of ON-OFF direction-selective ganglion cells in the rabbit retina , 1993, Vision Research.

[2]  W. R. Taylor,et al.  Diverse Synaptic Mechanisms Generate Direction Selectivity in the Rabbit Retina , 2002, The Journal of Neuroscience.

[3]  Marla B Feller,et al.  Vision and the establishment of direction-selectivity: a tale of two circuits , 2009, Current Opinion in Neurobiology.

[4]  Alfredo Kirkwood,et al.  Neuromodulation of Cortical Synaptic Plasticity , 2007 .

[5]  A. Basbaum,et al.  The senses : a comprehensive reference , 2008 .

[6]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[7]  Darius Burschka,et al.  Advances in Computational Stereo , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Shelley I. Fried,et al.  Image Processing: How the Retina Detects the Direction of Image Motion , 2007, Current Biology.

[9]  R. Wong,et al.  Retinal waves and visual system development. , 1999, Annual review of neuroscience.

[10]  Stefan Wermter,et al.  A self-organizing map of sigma-pi units , 2007, Neurocomputing.

[11]  Frank S. Werblin,et al.  Mechanisms and circuitry underlying directional selectivity in the retina , 2002, Nature.

[12]  R. Masland Neuronal diversity in the retina , 2001, Current Opinion in Neurobiology.

[13]  B. Krekelberg 1 MOTION DETECTION MECHANISMS , 2006 .

[14]  Wilfrid Rall,et al.  Theoretical significance of dendritic trees for neuronal input-output relations , 1964 .

[15]  Alexander Borst,et al.  Correlation versus gradient type motion detectors: the pros and cons , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[16]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[17]  J. E. Lewis Sensory processing and the network mechanisms for reading neuronal population codes , 1999, Journal of Comparative Physiology A.

[18]  F. Amthor,et al.  Morphology of on-off direction-selective ganglion cells in the rabbit retina , 1984, Brain Research.

[19]  Colin Giles,et al.  Learning, invariance, and generalization in high-order neural networks. , 1987, Applied optics.

[20]  N. Grzywacz,et al.  A model of the directional selectivity circuit in retina: transformations by neurons singly and in concert , 1992 .

[21]  Joydeep Ghosh,et al.  Efficient Higher-Order Neural Networks for Classification and Function Approximation , 1992, Int. J. Neural Syst..

[22]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  Vivien A. Casagrande,et al.  Biophysics of Computation: Information Processing in Single Neurons , 1999 .

[24]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[25]  E. Chichilnisky,et al.  Direction Selectivity in the Retina Is Established Independent of Visual Experience and Cholinergic Retinal Waves , 2008, Neuron.

[26]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[27]  Sapiyan Baba,et al.  Neural Clustering Of Correspondences For Visual Pose Estimation , 2009, ECMS.

[28]  B. Boycott,et al.  Morphological Classification of Bipolar Cells of the Primate Retina , 1991, The European journal of neuroscience.

[29]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[30]  F. Amthor,et al.  Synaptic input to the on–off directionally selective ganglion cell in the rabbit retina , 2003, The Journal of comparative neurology.

[31]  C. W. Oyster,et al.  The analysis of image motion by the rabbit retina , 1968, The Journal of physiology.

[32]  Alexander Borst,et al.  The role of GABA in detecting visual motion , 1990, Brain Research.

[33]  Jonathan B Demb,et al.  Cellular Mechanisms for Direction Selectivity in the Retina , 2007, Neuron.

[34]  Marla B Feller,et al.  Retinal waves: mechanisms and function in visual system development. , 2005, Cell calcium.

[35]  Nicholas Oesch,et al.  Direction-Selective Dendritic Action Potentials in Rabbit Retina , 2005, Neuron.

[36]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[37]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[38]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[39]  David E. Rumelhart,et al.  Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks , 1989, Neural Computation.

[40]  Seunghoon Lee,et al.  The Synaptic Mechanism of Direction Selectivity in Distal Processes of Starburst Amacrine Cells , 2006, Neuron.

[41]  Barry B. Lee,et al.  Center surround receptive field structure of cone bipolar cells in primate retina , 2000, Vision Research.

[42]  Stephen D. Van Hooser,et al.  Experience with moving visual stimuli drives the early development of cortical direction selectivity , 2008, Nature.

[43]  D. V. van Essen,et al.  A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  Bartlett W. Mel,et al.  Information Processing in Dendritic Trees , 1994, Neural Computation.

[45]  Minggang Chen,et al.  Physiological properties of direction‐selective ganglion cells in early postnatal and adult mouse retina , 2009, The Journal of physiology.

[46]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[47]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .