IFKCN: Applying fuzzy Kohonen clustering network to interval data

The recording of interval data has become a common practice in real world applications and nowadays this kind of data is often used to describe objects. In this paper, we introduce a new fuzzy Kohonen clustering network for symbolic interval data (IFKCN). The network combine the idea of fuzzy membership values for learning rates and the algorithm is able to show superiority in processing the ambiguity and the uncertainty present in data sets. Experiments with benchmark interval data sets and an artificial interval data set for evaluating the usefulness of the proposed method were carried out.

[1]  Yves Lechevallier,et al.  Dynamic Clustering of Interval-Valued Data Based on Adaptive Quadratic Distances , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[2]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[3]  P. Sopp Cluster analysis. , 1996, Veterinary immunology and immunopathology.

[4]  Francisco de A. T. de Carvalho,et al.  Clustering of interval data based on city-block distances , 2004, Pattern Recognit. Lett..

[5]  Allan D. Gordon,et al.  An Iterative Relocation Algorithm for Classifying Symbolic Data , 2000 .

[6]  A. Boudou,et al.  Mercury in the food web: accumulation and transfer mechanisms. , 1997, Metal ions in biological systems.

[7]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[8]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[9]  Hans-Hermann Bock 6. Symbolic Data Analysis , 2003 .

[10]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .

[11]  Mohamed A. Ismail,et al.  Fuzzy clustering for symbolic data , 1998, IEEE Trans. Fuzzy Syst..

[12]  Sushmita Mitra,et al.  Clustering and its validation in a symbolic framework , 2003, Pattern Recognit. Lett..

[13]  Francisco de A. T. de Carvalho,et al.  Unsupervised pattern recognition models for mixed feature-type symbolic data , 2010, Pattern Recognit. Lett..

[14]  L. Billard,et al.  From the Statistics of Data to the Statistics of Knowledge , 2003 .

[15]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[16]  Edwin Diday,et al.  An introduction to symbolic data analysis and the SODAS software , 2003, Intell. Data Anal..

[17]  James C. Bezdek,et al.  Fuzzy Kohonen clustering networks , 1994, Pattern Recognit..

[18]  Hans-Hermann Bock,et al.  Dynamic clustering for interval data based on L2 distance , 2006, Comput. Stat..

[19]  Francisco de A. T. de Carvalho,et al.  Fuzzy c-means clustering methods for symbolic interval data , 2007, Pattern Recognit. Lett..

[20]  Monique Noirhomme-Fraiture,et al.  Symbolic Data Analysis and the SODAS Software , 2008 .

[21]  Hans-Hermann Bock CLUSTERING ALGORITHMS AND KOHONEN MAPS FOR SYMBOLIC DATA(Symbolic Data Analysis) , 2003 .

[22]  Miin-Shen Yang,et al.  Fuzzy clustering algorithms for mixed feature variables , 2004, Fuzzy Sets Syst..