Hyperuniform point sets on the sphere: probabilistic aspects

The concept of hyperuniformity has been introduced by Torquato and Stillinger in 2003 as a notion to detect structural behaviour intermediate between crystalline order and amorphous disorder. The present paper studies a generalisation of this concept to the unit sphere. It is shown that several well studied determinantal point processes are hyperuniform.

[1]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[3]  de Ng Dick Bruijn,et al.  Quasicrystals and their Fourier transform , 1986 .

[4]  M. Zamani,et al.  The spherical ensemble and uniform distribution of points on the sphere , 2014, 1407.5832.

[5]  E. Saff,et al.  Asymptotics for minimal discrete energy on the sphere , 1995 .

[6]  Giacomo Gigante,et al.  Diameter Bounded Equal Measure Partitions of Ahlfors Regular Metric Measure Spaces , 2015, Discrete & Computational Geometry.

[7]  Volker Schönefeld Spherical Harmonics , 2019, An Introduction to Radio Astronomy.

[8]  R. Alexander,et al.  On the sum of distances betweenn points on a sphere , 1972 .

[9]  Peter Grabner,et al.  Hyperuniform Point Sets on the Sphere: Deterministic Aspects , 2017, Constructive Approximation.

[10]  Frits Beukers,et al.  SPECIAL FUNCTIONS (Encyclopedia of Mathematics and its Applications 71) , 2001 .

[11]  A. Soshnikov Determinantal random point fields , 2000, math/0002099.

[12]  Eugene P. Wigner,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1966 .

[13]  Александр Борисович Сошников,et al.  Детерминантные случайные точечные поля@@@Determinantal random point fields , 2000 .

[14]  S. Čopar,et al.  Spherical structure factor and classification of hyperuniformity on the sphere. , 2019, Physical review. E.

[15]  J. Lindenstrauss,et al.  Distribution of points on spheres and approximation by zonotopes , 1988 .

[16]  S. Torquato,et al.  Hyperuniformity on spherical surfaces. , 2018, Physical review. E.

[17]  R. Alexander,et al.  On the sum of distances betweenn points on a sphere. II , 1972 .

[18]  Yuval Peres,et al.  Zeros of Gaussian Analytic Functions and Determinantal Point Processes , 2009, University Lecture Series.

[19]  T. Stepanyuk Hyperuniform Point Sets on Flat Tori: Deterministic and Probabilistic Aspects , 2019, Constructive Approximation.

[20]  C. Beltrán,et al.  The Projective Ensemble and Distribution of Points in Odd-Dimensional Spheres , 2017, 1703.00416.

[21]  Manjunath Krishnapur Zeros of Random Analytic Functions , 2006 .

[22]  Carlos Beltrán,et al.  Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres , 2015, J. Complex..

[23]  Paul C. Leopardi A PARTITION OF THE UNIT SPHERE INTO REGIONS OF EQUAL AREA AND SMALL DIAMETER , 2006 .