Image Reconstruction Methods for MATLAB Users - A Moore-Penrose Inverse Approach

In the last decades the Moore-Penrose pseudoinverse has found a wide range of applications in many areas of Science and became a useful tool for different scientists dealing with optimization problems, data analysis, solutions of linear integral equations, etc. At first we will present a review of some of the basic results on the so-called Moore-Penrose pseudoinverse of matrices, a concept that generalizes the usual notion of inverse of a square matrix, but that is also applicable to singular square matrices or even to non-square matrices.

[1]  Vasilios N. Katsikis,et al.  Applications of the Moore-Penrose Inverse in Digital Image Restoration , 2009 .

[2]  B. John Oommen,et al.  Moment-Preserving Piecewise Linear Approximations of Signals and Images , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  M. Hillebrand,et al.  Outlier robust corner-preserving methods for reconstructing noisy images , 2007, 0708.0481.

[4]  M. M. Sondhi,et al.  Image restoration: The removal of spatially invariant degradations , 1972 .

[5]  Sim Heng Ong,et al.  Image Analysis by Tchebichef Moments , 2001, IEEE Trans. Image Process..

[6]  Aggelos K. Katsaggelos,et al.  Iterative restoration of fast‐moving objects in dynamic image sequences , 1996 .

[7]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Federico Thomas,et al.  A Matrix-Based Approach to the Image Moment Problem , 2006, Journal of Mathematical Imaging and Vision.

[9]  Vasilios N. Katsikis,et al.  Digital Image Reconstruction in the Spectral Domain Utilizing the Moore-Penrose Inverse , 2010 .

[10]  Aggelos K. Katsaggelos,et al.  Digital image restoration , 2012, IEEE Signal Process. Mag..

[11]  Nikolas P. Galatsanos,et al.  Super-Resolution Based on Fast Registration and Maximum a Posteriori Reconstruction , 2007, IEEE Transactions on Image Processing.

[12]  Milan B. Tasic,et al.  Computation of generalized inverses by using the LDL* decomposition , 2012, Appl. Math. Lett..

[13]  David W. Capson,et al.  Video-rate eigenspace methods for position tracking and remote monitoring , 2002, Proceedings Fifth IEEE Southwest Symposium on Image Analysis and Interpretation.

[14]  Robert B. McGhee,et al.  Aircraft Identification by Moment Invariants , 1977, IEEE Transactions on Computers.

[15]  C. W. Groetsch,et al.  Generalized inverses of linear operators , 1977 .

[16]  M. El-Sayed Wahed Image enhancement using second generation wavelet super resolution , 2007 .

[17]  Alan C. Bovik,et al.  The Essential Guide to Image Processing , 2009, J. Electronic Imaging.

[18]  Miroslaw Pawlak,et al.  On the reconstruction aspects of moment descriptors , 1992, IEEE Trans. Inf. Theory.

[19]  A. Berman Generalized Inverses of Linear Transformations (S. L. Campbell and C. D. Meyer, Jr.) , 1981 .

[20]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[21]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[22]  Vasilios N. Katsikis,et al.  An improved method for the computation of the Moore-Penrose inverse matrix , 2011, Appl. Math. Comput..

[23]  H. Joel Trussell,et al.  Identification and restoration of spatially variant motion blurs in sequential images , 1992, IEEE Trans. Image Process..

[24]  M. Teague Image analysis via the general theory of moments , 1980 .

[25]  Xin Jiang-hui Digital Image Restoration Techniques:A Review , 2009 .

[26]  R.W. Schafer,et al.  Constrained iterative restoration algorithms , 1981, Proceedings of the IEEE.

[27]  Aggelos K. Katsaggelos,et al.  When Ky is in the range of the operator , 2002 .

[28]  Peyman Milanfar,et al.  A moment-based variational approach to tomographic reconstruction , 1996, IEEE Trans. Image Process..