An STS-Based Map of the Human Genome

A physical map has been constructed of the human genome containing 15,086 sequence-tagged sites (STSs), with an average spacing of 199 kilobases. The project involved assembly of a radiation hybrid map of the human genome containing 6193 loci and incorporated a genetic linkage map of the human genome containing 5264 loci. This information was combined with the results of STS-content screening of 10,850 loci against a yeast artificial chromosome library to produce an integrated map, anchored by the radiation hybrid and genetic maps. The map provides radiation hybrid coverage of 99 percent and physical coverage of 94 percent of the human genome. The map also represents an early step in an international project to generate a transcript map of the human genome, with more than 3235 expressed sequences localized. The STSs in the map provide a scaffold for initiating large-scale sequencing of the human genome.

L Kruglyak | M P Reeve-Daly | E S Lander | N Goodman | L D Stein | B. Birren | E. Lander | G. Gyapay | L. Hui | A. B. Castle | C. Fizames | J. Ma | J. Morissette | S. Rozen | D. Slonim | L. Stein | X. Wu | T. Hudson | J. Weissenbach | Huy Nguyen | D. Page | L. Kruglyak | J. Orlin | N. Goodman | T. Hawkins | C. Evans | C. Dib | M. P. Reeve-Daly | Alville J. Collymore | J. Silva | W. Ye | S. Ganiatsas | M. DeAngelis | S. Fauré | S. Foote | Rafael Baptista | S. Gerety | C. Vestergaard | S S Gerety | H Nguyen | I S Zemsteva | L Hui | J Silva | X Wu | B W Birren | T J Hudson | J Weissenbach | Mary Pat Reeve-Daly | C Fizames | Shu-hua Xu | K. Ingalls | T. J. O'Connor | C. Rosenberg | S. Gerety | Kimberly A. Ingalls | T L Hawkins | S Rozen | D C Page | R. Baptista | S. Xu | X. Hu | A. Colbert | K. Wilson | J. S. Bae | S. Maitra | R. Nahf | L. T. Horton | M. O. Anderson | V. Kouyoumjian | I. S. Zemsteva | J. Tam | R. Devine | D. F. Courtney | M. T. Renaud | H. Nguyen | S Ganiatsas | S H Xu | A M Colbert | Richard P. Devine | J Ma | A B Castle | D K Slonim | R Baptista | X Hu | C Rosenberg | C Vestergaard | K M Wilson | J S Bae | S Maitra | C A Evans | M M DeAngelis | K A Ingalls | R W Nahf | L T Horton | M O Anderson | A J Collymore | W Ye | V Kouyoumjian | J Tam | R Devine | D F Courtney | M T Renaud | T J O'Connor | S Fauré | G Gyapay | C Dib | J Morissette | J B Orlin | S Foote | Tara J. O'Connor | Sebastian S. Gerety | Shanak Maitra | Wenjuan Ye | James P. Tam | Robert Nahf | Lincoln D. Stein | Junli Ma | James Silva | Rafael Baptista | Xintong Hu | L. Hui | Xiaoyun Wu | Christina Vestergaard | Kimberly M. Wilson | Jane S. Bae | Lloyd T. Horton | Michele Oskin Anderson | Vardouhie Kouyoumjian | Irena S. Zemsteva | Dorothy F. Courtney | Michelle Turner Renaud | D. Page | Huy L. Nguyen | A. M. Colbert | Lincoln Stein | L. Stein | Soula Ganiatsas

[1]  John Quackenbush,et al.  An STS content map of human chromosome 11: localization of 910 YAC clones and 109 islands. , 1995, Genomics.

[2]  D. Page,et al.  The human Y chromosome: overlapping DNA clones spanning the euchromatic region. , 1992, Science.

[3]  M. Olson,et al.  Chromosomal region of the cystic fibrosis gene in yeast artificial chromosomes: a model for human genome mapping. , 1990, Science.

[4]  Gregory D. Schuler,et al.  ESTablishing a human transcript map , 1995, Nature Genetics.

[5]  K. Isono,et al.  The physical map of the whole E. coli chromosome: Application of a new strategy for rapid analysis and sorting of a large genomic library , 1987, Cell.

[6]  G. Bernardi,et al.  The highest gene concentrations in the human genome are in telomeric bands of metaphase chromosomes. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Raap,et al.  Quantification of sensitive non-isotopic filter hybridizations using the peroxidase catalyzed luminol reaction. , 1992, Molecular and cellular probes.

[8]  K H Buetow,et al.  A comprehensive human linkage map with centimorgan density. Cooperative Human Linkage Center (CHLC). , 1994, Science.

[9]  A. Coulson,et al.  Toward a physical map of the genome of the nematode Caenorhabditis elegans. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[10]  K. Montgomery,et al.  A second-generation YAC contig map of human chromosome 12. , 1995, Nature.

[11]  S. Naylor,et al.  Characterization of NIGMS human/rodent somatic cell hybrid mapping panel 2 by PCR. , 1993, Genomics.

[12]  B. Birren,et al.  Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Galas,et al.  A new five-year plan for the U.S. Human Genome Project. , 1993, Science.

[14]  C. Amemiya,et al.  A new bacteriophage P1–derived vector for the propagation of large human DNA fragments , 1994, Nature Genetics.

[15]  E. Lander,et al.  Large human YACs constructed in a rad52 strain show a reduced rate of chimerism. , 1994, Genomics.

[16]  D. Botstein,et al.  Construction of a genetic linkage map in man using restriction fragment length polymorphisms. , 1980, American journal of human genetics.

[17]  G. Evans,et al.  Detection and characterization of "chimeric" yeast artificial chromosome clones by fluorescent in situ suppression hybridization. , 1992, Genomics.

[18]  L. Hood,et al.  A common language for physical mapping of the human genome. , 1989, Science.

[19]  G. M. Lathrop,et al.  A radiation hybrid map of 506 STS markers spanning human chromosome 11 , 1994, Nature Genetics.

[20]  E. Lander,et al.  Genomic mapping by anchoring random clones: a mathematical analysis. , 1991, Genomics.

[21]  G. Gyapay,et al.  A second-generation linkage map of the human genome , 1992, Nature.

[22]  K. Buetow,et al.  Integration of physical, breakpoint and genetic maps of chromosome 22. Localization of 587 yeast artificial chromosomes with 238 mapped markers. , 1995, Human molecular genetics.

[23]  R. Myers,et al.  Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. , 1990, Science.

[24]  T. Hudson,et al.  Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. , 1992, Genomics.

[25]  J. Weber,et al.  Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. , 1989, American journal of human genetics.

[26]  X. Estivill,et al.  Continuum of overlapping clones spanning the entire human chromosome 21q , 1992, Nature.

[27]  J. Weissenbach,et al.  A method for constructing radiation hybrid maps of whole genomes , 1994, Nature Genetics.

[28]  D. Schlessinger,et al.  A 6-Mb YAC contig in Xp22.1-p22.2 spanning the DXS69E, XE59, GLRA2, PIGA, GRPR, CALB3, and PHKA2 genes. , 1995, Genomics.

[29]  H. Massa,et al.  Integration of physical, genetic and cytogenetic maps of human chromosome 7: isolation and analysis of yeast artificial chromosome clones for 117 mapped genetic markers. , 1994, Human molecular genetics.

[30]  E S Lander,et al.  Systematic detection of errors in genetic linkage data. , 1992, Genomics.

[31]  R. Mulivor,et al.  NIGMS human/rodent somatic cell hybrid mapping panels 1 and 2. , 1993, Genomics.

[32]  M. Spence,et al.  Analysis of human genetic linkage , 1986 .

[33]  J. Sikela,et al.  Gene–based sequence–tagged–sites (STSs) as the basis for a human gene map , 1995, Nature Genetics.

[34]  E. Lander,et al.  Construction of multilocus genetic linkage maps in humans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[35]  S. Bentolila,et al.  The Genexpress Index: a resource for gene discovery and the genic map of the human genome. , 1995, Genome research.