Continuous-Discrete Reinforcement Learning for Hybrid Control in Robotics
暂无分享,去创建一个
Martin A. Riedmiller | Thomas Lampe | Jonas Buchli | Abbas Abdolmaleki | Jost Tobias Springenberg | Nicolas Heess | Martin Riedmiller | Markus Wulfmeier | Roland Hafner | Michael Neunert | Francesco Romano | N. Heess | Roland Hafner | T. Lampe | Markus Wulfmeier | A. Abdolmaleki | Michael Neunert | J. Buchli | Francesco Romano | J. T. Springenberg | Thomas Lampe
[1] Marc G. Bellemare,et al. Safe and Efficient Off-Policy Reinforcement Learning , 2016, NIPS.
[2] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[3] Nikolaus Hansen,et al. Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.
[4] Henry Zhu,et al. Soft Actor-Critic Algorithms and Applications , 2018, ArXiv.
[5] Craig J. Bester,et al. Multi-Pass Q-Networks for Deep Reinforcement Learning with Parameterised Action Spaces , 2019, ArXiv.
[6] V. Borkar,et al. A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..
[7] John Lygeros,et al. A Game-Theoretic Approach to Hybrid System Design , 1996, Hybrid Systems.
[8] Doina Precup,et al. The Termination Critic , 2019, AISTATS.
[9] Qing Wang,et al. Parametrized Deep Q-Networks Learning: Reinforcement Learning with Discrete-Continuous Hybrid Action Space , 2018, ArXiv.
[10] Alec Radford,et al. Proximal Policy Optimization Algorithms , 2017, ArXiv.
[11] Martin A. Riedmiller,et al. Regularized Hierarchical Policies for Compositional Transfer in Robotics , 2019, ArXiv.
[12] Shimon Whiteson,et al. DAC: The Double Actor-Critic Architecture for Learning Options , 2019, NeurIPS.
[13] Peter Stone,et al. Deep Reinforcement Learning in Parameterized Action Space , 2015, ICLR.
[14] Thomas Lampe,et al. Compositional Transfer in Hierarchical Reinforcement Learning , 2019, RSS 2020.
[15] Danna Zhou,et al. d. , 1934, Microbial pathogenesis.
[16] Alberto Bemporad,et al. Control of systems integrating logic, dynamics, and constraints , 1999, Autom..
[17] Yuval Tassa,et al. Control-limited differential dynamic programming , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).
[18] Yong Yu,et al. Hybrid Actor-Critic Reinforcement Learning in Parameterized Action Space , 2019, IJCAI.
[19] Shane Legg,et al. Human-level control through deep reinforcement learning , 2015, Nature.
[20] Pravesh Ranchod,et al. Reinforcement Learning with Parameterized Actions , 2015, AAAI.
[21] Doina Precup,et al. The Option-Critic Architecture , 2016, AAAI.
[22] Yuval Tassa,et al. Relative Entropy Regularized Policy Iteration , 2018, ArXiv.
[23] Yuval Tassa,et al. DeepMind Control Suite , 2018, ArXiv.
[24] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[25] Thomas Bäck,et al. Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .
[26] Demis Hassabis,et al. Mastering the game of Go without human knowledge , 2017, Nature.
[27] Xi Chen,et al. Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.
[28] Jakub W. Pachocki,et al. Learning dexterous in-hand manipulation , 2018, Int. J. Robotics Res..
[29] Yuval Tassa,et al. Maximum a Posteriori Policy Optimisation , 2018, ICLR.
[30] Yuval Tassa,et al. Continuous control with deep reinforcement learning , 2015, ICLR.
[31] Yuval Tassa,et al. Learning Continuous Control Policies by Stochastic Value Gradients , 2015, NIPS.