Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2 < z < 1.25

We estimate total mass (M-500), intracluster medium (ICM) mass (M-ICM), and stellar mass (M-star) in a Sunyaev-Zel'dovich effect (SZE) selected sample of 91 galaxy clusters with masses M-500 greater than or similar to 2.5 x 10(14) M-circle dot and redshift 0.2 < z < 1.25 from the 2500 deg(2) South Pole Telescope SPT-SZ survey. The total masses M-500 are estimated from the SZE observable, the ICM masses M-ICM are obtained from the analysis of Chandra X-ray observations, and the stellar masses M-star are derived by fitting spectral energy distribution templates to Dark Energy Survey griz optical photometry and WISE or Spitzer near-infrared photometry. We study trends in the stellar mass, the ICM mass, the total baryonic mass, and the cold baryonic fraction with cluster halo mass and redshift. We find significant departures from self-similarity in the mass scaling for all quantities, while the redshift trends are all statistically consistent with zero, indicating that the baryon content of clusters at fixed mass has changed remarkably little over the past approximate to 9 Gyr. We compare our results to the mean baryon fraction (and the stellar mass fraction) in the field, finding that these values lie above (below) those in cluster virial regions in all but the most massive clusters at low redshift. Using a simple model of the matter assembly of clusters from infalling groups with lower masses and from infalling material from the low-density environment or field surrounding the parent haloes, we show that the measured mass trends without strong redshift trends in the stellar mass scaling relation could be explained by a mass and redshift dependent fractional contribution from field material. Similar analyses of the ICM and baryon mass scaling relations provide evidence for the so-called 'missing baryons' outside cluster virial regions.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[3]  S. Borgani,et al.  Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution , 2016, 1607.00019.

[4]  A. Leauthaud,et al.  First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies , 2017, 1709.04484.

[5]  S. White,et al.  The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies , 2017, 1703.10907.

[6]  J. Frieman,et al.  Galaxy populations in massive galaxy clusters to z = 1.1: colour distribution, concentration, halo occupation number and red sequence fraction , 2016, 1604.00988.

[7]  Adrian T. Lee,et al.  SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY , 2016, 1609.05211.

[8]  Joop Schaye,et al.  The scatter and evolution of the global hot gas properties of simulated galaxy cluster populations , 2016, 1606.04545.

[9]  David Donovan,et al.  Weighing the giants– V. Galaxy cluster scaling relations , 2016, 1606.03407.

[10]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[11]  J. E. Ruhl,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2016, 1603.06522.

[12]  J. Mohr,et al.  THE EVOLUTION OF THE INTRACLUSTER MEDIUM METALLICITY IN SUNYAEV ZEL’DOVICH-SELECTED GALAXY CLUSTERS AT 0 < z < 1.5 , 2016, 1603.03035.

[13]  J. Starck,et al.  Multi-band morpho-Spectral Component Analysis Deblending Tool (MuSCADeT): Deblending colourful objects , 2016, 1603.00473.

[14]  R. Nichol,et al.  The Dark Energy Survey: more than dark energy - an overview , 2016, 1601.00329.

[15]  J. Mohr,et al.  Stellar mass to halo mass scaling relation for X-ray-selected low-mass galaxy clusters and groups out to redshift z ≈ 1 , 2015, 1512.01244.

[16]  H. Hoekstra,et al.  Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters , 2015, 1510.01745.

[17]  Heidelberg,et al.  Cosmology and Astrophysics from Relaxed Galaxy Clusters III: Thermodynamic Profiles and Scaling Relations , 2015, 1509.01322.

[18]  Klaus Dolag,et al.  Baryon impact on the halo mass function: Fitting formulae and implications for cluster cosmology , 2015, 1502.07357.

[19]  T. Schrabback,et al.  Baryon content of massive galaxy clusters at 0.57 < z < 1.33 , 2014, 1412.7823.

[20]  S. Paltani,et al.  The XXL Survey XIII. Baryon content of the bright cluster sample , 2015, 1512.03814.

[21]  B. Benson,et al.  DEEP CHANDRA, HST-COS, AND MEGACAM OBSERVATIONS OF THE PHOENIX CLUSTER: EXTREME STAR FORMATION AND AGN FEEDBACK ON HUNDRED KILOPARSEC SCALES , 2015, 1508.05941.

[22]  S. Derriere,et al.  T-PHOT: A new code for PSF-matched, prior-based, multiwavelength extragalactic deconfusion photometry , 2015, 1505.02516.

[23]  R. Teyssier,et al.  Rhapsody-G simulations: galaxy clusters as baryonic closed boxes and the covariance between hot gas and galaxies , 2015, Monthly Notices of the Royal Astronomical Society.

[24]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[25]  Adrian T. Lee,et al.  Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups , 2014, 1407.7520.

[26]  J. Mohr,et al.  Optical confirmation and redshift estimation of the Planck cluster candidates overlapping the Pan-STARRS Survey , 2014, 1407.6001.

[27]  M. Lueker,et al.  MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION σv AND X-RAY YX MEASUREMENTS , 2014, 1407.2942.

[28]  L. David,et al.  XMM-Newton and Chandra cross-calibration using HIFLUGCS galaxy clusters - Systematic temperature differences and cosmological impact , 2014, 1404.7130.

[29]  H. Hoekstra,et al.  Evidence for the inside-out growth of the stellar mass distribution in galaxy clusters since z~1 , 2014, 1412.2137.

[30]  Adrian T. Lee,et al.  GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2014, 1409.0850.

[31]  A. Finoguenov,et al.  LoCuSS: the near-infrared luminosity and weak-lensing mass scaling relation of galaxy clusters , 2014, 1407.1767.

[32]  Daniel P. Marrone,et al.  LoCuSS: Hydrostatic mass measurements of the high-LX cluster sample - cross-calibration of Chandra and XMM-Newton , 2014, 1406.6831.

[33]  T. Grav,et al.  INITIAL PERFORMANCE OF THE NEOWISE REACTIVATION MISSION , 2014, 1406.6025.

[34]  M. Lueker,et al.  THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS , 2014, 1404.6250.

[35]  Adrian T. Lee,et al.  OPTICAL SPECTROSCOPY AND VELOCITY DISPERSIONS OF GALAXY CLUSTERS FROM THE SPT-SZ SURVEY , 2013, 1311.4953.

[36]  J. Koppenhoefer,et al.  Weak lensing analysis of SZ-selected clusters of galaxies from the SPT and Planck surveys , 2013, 1310.6744.

[37]  H. Hoekstra,et al.  A census of stellar mass in ten massive haloes at z ~ 1 from the GCLASS Survey , 2013, 1310.0020.

[38]  J. Bartlett,et al.  Closing the loop: a self-consistent model of optical, X-ray and Sunyaev–Zel'dovich scaling relations for clusters of Galaxies , 2012, 1204.6305.

[39]  Anthony H. Gonzalez,et al.  PyGFit: A Tool for Extracting PSF Matched Photometry , 2013, 1310.6046.

[40]  L. Moustakas,et al.  THE ERA OF STAR FORMATION IN GALAXY CLUSTERS , 2013, 1310.6039.

[41]  S. Sivanandam,et al.  GALAXY CLUSTER BARYON FRACTIONS REVISITED , 2013, 1309.3565.

[42]  J. Bartlett,et al.  THE SPITZER SOUTH POLE TELESCOPE DEEP FIELD: SURVEY DESIGN AND INFRARED ARRAY CAMERA CATALOGS , 2013 .

[43]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[44]  Adrian T. Lee,et al.  THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 < z < 1.2 SELECTED FROM THE SPT-SZ SURVEY , 2013, 1305.2915.

[45]  A. Fontana,et al.  CANDELS MULTIWAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS UKIDSS ULTRA-DEEP SURVEY FIELD , 2013, 1305.1823.

[46]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[47]  Edward J. Wollack,et al.  The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev–Zel'dovich effect , 2013, 1301.0780.

[48]  S. Borgani,et al.  Baryon Census in Hydrodynamical Simulations of Galaxy Clusters , 2012, 1209.5058.

[49]  J. Mohr,et al.  TOWARD UNBIASED GALAXY CLUSTER MASSES FROM LINE-OF-SIGHT VELOCITY DISPERSIONS , 2012, 1203.5708.

[50]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[51]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: DYNAMICAL MASSES AND SCALING RELATIONS FOR A SAMPLE OF MASSIVE SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS , 2012, 1201.0991.

[52]  M. Lueker,et al.  COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 deg2 OF THE SOUTH POLE TELESCOPE SURVEY , 2011, 1112.5435.

[53]  C. J.,et al.  PRECISION MEASURES OF THE PRIMORDIAL ABUNDANCE OF DEUTERIUM ⋆ , 2013 .

[54]  Adrian T. Lee,et al.  HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY , 2012, 1208.3368.

[55]  J. Mohr,et al.  REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2012, 1207.4369.

[56]  Conor Mancone,et al.  EzGal: A Flexible Interface for Stellar Population Synthesis Models , 2012, 1205.0009.

[57]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[58]  J. Mohr,et al.  The XMM-BCS galaxy cluster survey. I. The X-ray selected cluster catalog from the initial 6 deg 2 , 2011, 1111.0141.

[59]  Joseph J. Mohr,et al.  A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS , 2011, 1104.2332.

[60]  U. Chicago,et al.  BARYON CONTENT OF MASSIVE GALAXY CLUSTERS AT z = 0–0.6 , 2011, 1112.1705.

[61]  S. Bamford,et al.  Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06 , 2011, 1111.5707.

[62]  P. Schneider,et al.  Star-formation efficiency and metal enrichment of the intracluster medium in local massive clusters of galaxies , 2011, 1109.0390.

[63]  E. L. Wright,et al.  THE SPITZER–WISE SURVEY OF THE ECLIPTIC POLES , 2011 .

[64]  B. A. Benson,et al.  A MULTIBAND STUDY OF THE GALAXY POPULATIONS OF THE FIRST FOUR SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTERS , 2011, 1103.4612.

[65]  Stefano Casertano,et al.  A 3% SOLUTION: DETERMINATION OF THE HUBBLE CONSTANT WITH THE HUBBLE SPACE TELESCOPE AND WIDE FIELD CAMERA 3 , 2011, 1103.2976.

[66]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[67]  R. B. Barreiro,et al.  Planck early results - X. Statistical analysis of Sunyaev-Zeldovich scaling relations for X-ray galaxy clusters , 2011, 1101.2043.

[68]  M. Halpern,et al.  THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV–ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY , 2010, 1010.1065.

[69]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[70]  M. Lueker,et al.  COSMOLOGICAL CONSTRAINTS FROM SUNYAEV-ZEL’DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY , 2011 .

[71]  D. Sijacki,et al.  HIFLUGCS: Galaxy cluster scaling relations between X-ray luminosity, gas mass, cluster radius, and velocity dispersion , 2010, 1011.3018.

[72]  V. Springel,et al.  Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters , 2010, 1008.4799.

[73]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[74]  F. Pearce,et al.  Baryon fractions in clusters of galaxies: evidence against a pre-heating model for entropy generation , 2010, 1007.0887.

[75]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, The Astrophysical Journal.

[76]  P. A. R. Ade,et al.  X-RAY PROPERTIES OF THE FIRST SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE , 2010, 1006.3068.

[77]  S. Driver,et al.  Quantifying cosmic variance , 2010, 1005.2538.

[78]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[79]  A. Evrard,et al.  MASSIVE HALOS IN MILLENNIUM GAS SIMULATIONS: MULTIVARIATE SCALING RELATIONS , 2009, 0910.1599.

[80]  G. W. Pratt,et al.  Gas entropy in a representative sample of nearby X-ray galaxy clusters (REXCESS): relationship to gas mass fraction , 2009, 0909.3776.

[81]  U. Cambridge,et al.  The accretion of galaxies into groups and clusters , 2009, 0908.0750.

[82]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[83]  G. W. Pratt,et al.  Galaxy cluster X-ray luminosity scaling relations from a representative local sample (REXCESS) , 2008, 0809.3784.

[84]  J. Frieman,et al.  CONSTRAINING THE SCATTER IN THE MASS–RICHNESS RELATION OF maxBCG CLUSTERS WITH WEAK LENSING AND X-RAY DATA , 2008, 0809.2794.

[85]  R. Wechsler,et al.  THE GALAXY CONTENT OF SDSS CLUSTERS AND GROUPS , 2007, 0710.3780.

[86]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[87]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[88]  M. Donahue,et al.  CHANDRA STUDIES OF THE X-RAY GAS PROPERTIES OF GALAXY GROUPS , 2008, 0805.2320.

[89]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[90]  Casey Papovich,et al.  TFIT: A Photometry Package Using Prior Information for Mixed‐Resolution Data Sets , 2007 .

[91]  H Germany,et al.  Calibration of the galaxy cluster M-500-Υ-x relation with XMM-Newton , 2007, 0709.1561.

[92]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[93]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[94]  D. Schiminovich,et al.  The First Release COSMOS Optical and Near-IR Data and Catalog , 2007, 0704.2430.

[95]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[96]  A. Fontana,et al.  ConvPhot: A profile-matching algorithm for precision photometry , 2007, astro-ph/0701232.

[97]  M. Halpern,et al.  Optical design of the atacama cosmology telescope and the millimeter bolometric array camera. , 2006, Applied optics.

[98]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[99]  the PLANCK-HFI Collaboration The Scientific Programme of Planck , 2006, astro-ph/0604069.

[100]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[101]  J. Mohr,et al.  Effects of Mergers and Core Structure on the Bulk Properties of Nearby Galaxy Clusters , 2005, astro-ph/0510064.

[102]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[103]  A. Kimball,et al.  Measurement of Galaxy Cluster Sizes, Radial Profiles, and Luminosity Functions from SDSS Photometric Data , 2004, astro-ph/0410467.

[104]  Gary J. Melnick,et al.  In-flight performance and calibration of the Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[105]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[106]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[107]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[108]  J. Mohr,et al.  Near-Infrared Properties of Galaxy Clusters: Luminosity as a Binding Mass Predictor and the State of Cluster Baryons , 2003, astro-ph/0304033.

[109]  E. Bell,et al.  The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions , 2003, astro-ph/0302543.

[110]  J. Carlstrom,et al.  Cosmology with the Sunyaev-Zel'dovich Effect , 2002, astro-ph/0208192.

[111]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[112]  J. Mohr,et al.  Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys , 2000, astro-ph/0002336.

[113]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[114]  H. Böhringer,et al.  The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters , 1999, astro-ph/0111285.

[115]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[116]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[117]  Gus Evrard,et al.  Properties of the Intracluster Medium in an Ensemble of Nearby Galaxy Clusters , 1999, astro-ph/9901281.

[118]  J. Navarro,et al.  The thermal imprint of galaxy formation on X-ray clusters , 1998, Nature.

[119]  A. Evrard,et al.  The LX—T relation and intracluster gas fractions of X-ray clusters , 1998, astro-ph/9806353.

[120]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[121]  J. Mohr,et al.  An X-Ray Size-Temperature Relation for Galaxy Clusters: Observation and Simulation , 1997, astro-ph/9707184.

[122]  R. Mushotzky,et al.  The Luminosity-Temperature Relation at z = 0.4 for Clusters of Galaxies , 1997, astro-ph/9703039.

[123]  A. Evrard The Intracluster Gas Fraction in X-ray Clusters : Constraints on the Clustered Mass Density , 1997, astro-ph/9701148.

[124]  W. Forman,et al.  A catalog of intracluster gas temperatures , 1993 .

[125]  W. Cash,et al.  Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques , 1979 .

[126]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[127]  E. Salpeter The Luminosity function and stellar evolution , 1955 .