Semiconductor molecular‐beam epitaxy at low temperatures

Low‐temperature molecular‐beam epitaxy (MBE) in semiconductors is reviewed, with a focus on limited thickness epitaxy (LTE), the regime where crystalline growth over an epitaxial thickness hepi is followed by a transition to amorphous deposition. The goal is to summarize the main results on this phenomenon, make the connection to other results on low‐temperature MBE, and present the large body of unpublished data on hepi. Since the problem is still not fully understood, all available data that have a bearing on the understanding of the effect are outlined. The scientific questions and practical problems that have driven interest in low‐temperature growth are outlined, and the phenomenon of LTE and the dependence of hepi on the growth conditions are described. The LTE effect is apparently general, but Si(100) is the model system for which most data are available. Breakdown of epitaxy follows a universal curve that is inconsistent with continuous nucleation of the amorphous phase, implying that growth is tr...

[1]  Lai,et al.  Kinetic growth with surface relaxation: Continuum versus atomistic models. , 1991, Physical review letters.

[2]  Michael R. Melloch,et al.  Formation of arsenic precipitates in GaAs buffer layers grown by molecular beam epitaxy at low substrate temperatures , 1990 .

[3]  Yasuhiro Shiraki,et al.  Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE , 1986 .

[4]  J. Kortright,et al.  Structural properties of As‐rich GaAs grown by molecular beam epitaxy at low temperatures , 1989 .

[5]  P. I. Tamborenea,et al.  Molecular beam epitaxial growth: simulation and continuum theory☆ , 1992 .

[6]  Eaglesham,et al.  Limiting thickness hepi for epitaxial growth and room-temperature Si growth on Si(100). , 1990, Physical review letters.

[7]  R. Bennett,et al.  Determination of diffusion, partition and sticking coefficients for boron, phosphorus and antimony in silicon , 1975 .

[8]  T. C. Leung,et al.  Point defects in Si thin films grown by molecular beam epitaxy , 1992 .

[9]  U. Konig,et al.  Molecular beam epitaxy of silicon: Effects of heavy Sb doping , 1981 .

[10]  Y. Chabal,et al.  Ideal hydrogen termination of the Si (111) surface , 1990 .

[11]  Douglas R. Dykaar,et al.  Limited thickness epitaxy in GaAs molecular beam epitaxy near 200 °C , 1991 .

[12]  L. Smit,et al.  The use of pulsed laser irradiation in silicon molecular beam epitaxy: A comparative low energy electron diffraction study , 1983 .

[13]  S. Wagner,et al.  Hydrogen surface coverage: Raising the silicon epitaxial growth temperature , 1989 .

[14]  T. Sakamoto,et al.  Intensity oscillations of reflection high‐energy electron diffraction during silicon molecular beam epitaxial growth , 1985 .

[15]  Pennycook,et al.  High-resolution incoherent imaging of crystals. , 1990, Physical review letters.

[16]  S. T. Picraux,et al.  Dynamics of growth roughening and smoothening on Ge (001) , 1989 .

[17]  M. Caymax,et al.  Very low temperature (250 °C) epitaxial growth of silicon by glow discharge of silane , 1987 .

[18]  M. Cerullo,et al.  Low‐temperature growth of Ge on Si(100) , 1991 .

[19]  J. Dieleman,et al.  Island and step structures on molecular beam epitaxy grown Si(001) surfaces , 1990 .

[20]  W. Fite,et al.  Reflection and Dissociation of H2 on Tungsten , 1962 .

[21]  Deterministic and stochastic surface growth with generalized nonlinearity. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[23]  P. Larsen,et al.  Observations on intensity oscillations in reflection high‐energy electron diffraction during epitaxial growth of Si(001) and Ge(001) , 1986 .

[24]  E. Fitzgerald,et al.  Columnar Structure Growth by Silicon Molecular Beam Epitaxy , 1991 .

[25]  V. L. Thanh,et al.  A RHEED Study of Epitaxial Growth of Iron on a Silicon Surface: Experimental Evidence for Kinetic Roughening , 1991 .

[26]  Wolf,et al.  Kinetic roughening of vicinal surfaces. , 1991, Physical review letters.

[27]  W. H. Weinberg,et al.  Hydrogen desorption from the monohydride phase on Si(100) , 1990 .

[28]  G. W. Smith,et al.  Real-time laser-light scattering studies of surface topography development during GaAs MBE growth , 1993 .

[29]  F. Ross,et al.  Interface analysis using elastic scattering in the transmission electron microscope: Application to the oxidation of silicon , 1988 .

[30]  Webb,et al.  Growth and equilibrium structures in the epitaxy of Si on Si(001). , 1989, Physical review letters.

[31]  M. Hasan,et al.  Critical epitaxial thicknesses for low‐temperature (20–100 °C) Ge(001)2×1 growth by molecular‐beam epitaxy , 1993 .

[32]  Herzog,et al.  Kinetics of ordered growth of Si on Si(100) at low temperatures. , 1989, Physical review. B, Condensed matter.

[33]  S. Barnett,et al.  Si molecular beam Epitaxy: A model for temperature dependent incorporation probabilities and depth distributions of dopants exhibiting strong surface segregation , 1985 .

[34]  M. Lagally,et al.  Scanning tunneling microscopy study of diffusion, growth, and coarsening of Si on Si(001) , 1990 .

[35]  Kunkel,et al.  Reentrant layer-by-layer growth during molecular-beam epitaxy of metal-on-metal substrates. , 1990, Physical review letters.

[36]  R. Hamers,et al.  Epitaxial growth of silicon on Si(001) by scanning tunneling microscopy , 1990 .

[37]  K. West,et al.  Limited thickness epitaxy of semiconductors and Si MBE down to room temperature , 1991 .

[38]  Winter Effect of image potential and charge exchange on the trajectory of fast protons in surface scattering. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[39]  B. Joyce,et al.  Temperature range for growth of autoepitaxial GaAs films by MBE , 1978 .

[40]  D. Vvedensky,et al.  Nonlinear diffusion equation for epitaxial growth and recovery on vicinal surfaces , 1991 .

[41]  G. S. Higashi,et al.  370 °C clean for Si molecular beam epitaxy using a HF dip , 1991 .

[42]  F. Schäffler,et al.  Low temperature kinetics of Si(100) MBE growth , 1989 .

[43]  L. Feldman,et al.  Low‐temperature homoepitaxy on Si(111) , 1991 .

[44]  A. Kellock,et al.  Very low temperature (<400 °C) silicon molecular beam epitaxy: The role of low energy ion irradiation , 1993 .

[45]  Tang,et al.  Kinetic roughening in molecular-beam epitaxy. , 1991, Physical review letters.

[46]  Zangwill,et al.  Growth dynamics of sputter deposition. , 1989, Physical review letters.

[47]  L. Feldman,et al.  Molecular beam epitaxy and reconstructed surfaces , 1985 .

[48]  Eicke R. Weber,et al.  Stoichiometry‐related defects in GaAs grown by molecular‐beam epitaxy at low temperatures , 1989 .

[49]  J. Vance,et al.  Growth and Perfection of Crystals. , 1959 .

[50]  J. Poate,et al.  Time dependence of dopant diffusion in δ‐doped Si films and properties of Si point defects , 1994 .

[51]  Sander,et al.  Stable and unstable growth in molecular beam epitaxy. , 1994, Physical review letters.

[52]  D. Eaglesham,et al.  Effect of H on Si molecular‐beam epitaxy , 1993 .

[53]  H. Leamy,et al.  Columnar microstructure in vapor-deposited thin films , 1977 .

[54]  K. Nakagawa,et al.  Growth and characterization of atomic layer doping structures in Si , 1989 .

[55]  Max G. Lagally,et al.  Kinetics of ordering and growth at surfaces , 1990 .

[56]  I. Stensgaard,et al.  Si(001) SURFACE STUDIES USING HIGH ENERGY ION SCATTERING , 1980 .

[57]  T. Saitoh,et al.  Very-Low-Temperature Silicon Epitaxy by Plasma-CVD Using SiH4-PH3-H2 Reactants for Bipolar Devices , 1988 .

[58]  D. Eaglesham,et al.  Effect of hydrogen on surface roughening during Si homoepitaxial growth , 1993 .

[59]  H. S. Luftman,et al.  Doping of Si thin films by low‐temperature molecular beam epitaxy , 1993 .

[60]  Leonard M. Sander,et al.  Roughening phase transition in surface growth. , 1990, Physical review letters.

[61]  A. Zangwill,et al.  Macroscopic model for columnar growth of amorphous films by sputter deposition , 1991 .

[62]  M. Cerullo,et al.  Low‐temperature Si molecular beam epitaxy: Solution to the doping problem , 1990 .

[63]  T. Yew,et al.  Low temperature (313 °C) silicon epitaxial growth by plasma‐enhanced chemical vapor deposition with stainless steel mesh , 1993 .

[64]  Amar,et al.  Universal scaling function and amplitude ratios in surface growth. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[65]  L. Feldman,et al.  Buried, ordered structures: Boron in Si(111) and Si(100) , 1991 .

[66]  Clarke,et al.  Origin of reflection high-energy electron-diffraction intensity oscillations during molecular-beam epitaxy: A computational modeling approach. , 1987, Physical review letters.

[67]  F. Jona STUDY OF THE EARLY STAGES OF THE EPITAXY OF SILICON ON SILICON , 1966 .