A metal–ion-responsive adhesive material via switching of molecular recognition properties

[1]  C. Keplinger,et al.  25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters , 2013, Advanced materials.

[2]  Martin Steinhart,et al.  Reversible adhesion switching of porous fibrillar adhesive pads by humidity. , 2013, Nano letters.

[3]  Julie N. L. Albert,et al.  Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. , 2013, Chemical Society reviews.

[4]  A. Concheiro,et al.  Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. , 2013, Advanced drug delivery reviews.

[5]  A. Hashidzume,et al.  pH-responsive self-assembly by molecular recognition on a macroscopic scale. , 2013, Macromolecular rapid communications.

[6]  Ronald S. Fearing,et al.  Controllable Particle Adhesion with a Magnetically Actuated Synthetic Gecko Adhesive , 2013 .

[7]  K. Sada,et al.  Design and function of smart polymer gels based on ion recognition , 2013 .

[8]  Akira Harada,et al.  Preorganized Hydrogel: Self‐Healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guest‐Monomers that Contain Cyclodextrins and Hydrophobic Guest Groups , 2013, Advanced materials.

[9]  M. Shionoya,et al.  Stimuli-Responsive Synthetic Metallopeptides , 2013 .

[10]  Y. Takashima,et al.  Macroscopic Self-Assembly Based on Molecular Recognition: Effect of Linkage between Aromatics and the Polyacrylamide Gel Scaffold, Amide versus Ester , 2013 .

[11]  Akira Harada,et al.  Reversible self-assembly of gels through metal-ligand interactions , 2013, Scientific Reports.

[12]  Vivian Wing-Wah Yam,et al.  Recent advances in metallogels. , 2013, Chemical Society reviews.

[13]  A. Synytska,et al.  Switchable adhesion by chemical functionality and topography , 2012 .

[14]  Y. Takashima,et al.  Temperature-Sensitive Macroscopic Assembly Based on Molecular Recognition. , 2012, ACS macro letters.

[15]  Oren A Scherman,et al.  Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. , 2012, Journal of the American Chemical Society.

[16]  E. W. Meijer,et al.  Functional Supramolecular Polymers , 2012, Science.

[17]  Jing Zhang,et al.  One-Step Fabrication of Supramolecular Microcapsules from Microfluidic Droplets , 2012, Science.

[18]  Y. Takashima,et al.  Switching of macroscopic molecular recognition selectivity using a mixed solvent system , 2012, Nature Communications.

[19]  Y. Takashima,et al.  Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions , 2012, Nature Communications.

[20]  Akira Harada,et al.  Photoswitchable gel assembly based on molecular recognition , 2012, Nature Communications.

[21]  Akira Harada,et al.  Redox-responsive self-healing materials formed from host–guest polymers , 2011, Nature communications.

[22]  Y. Takashima,et al.  Macroscopic observations of molecular recognition: discrimination of the substituted position on the naphthyl group by polyacrylamide gel modified with β-cyclodextrin. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[23]  Leonid Ionov,et al.  A comparative study on switchable adhesion between thermoresponsive polymer brushes on flat and rough surfaces , 2011 .

[24]  Y. Takashima,et al.  Self-Assembly of Gels through Molecular Recognition of Cyclodextrins: Shape Selectivity for Linear and Cyclic Guest Molecules , 2011 .

[25]  Henrik Birkedal,et al.  pH-induced metal-ligand cross-links inspired by mussel yield self-healing polymer networks with near-covalent elastic moduli , 2011, Proceedings of the National Academy of Sciences.

[26]  Mingjie Liu,et al.  Switchable Adhesion on Liquid/Solid Interfaces , 2010 .

[27]  T. Nabeshima Construction of Cooperative and Responsive Supramolecular Systems for Molecular Functional Modulation , 2010 .

[28]  Jonathan W Steed,et al.  Metal- and anion-binding supramolecular gels. , 2010, Chemical reviews.

[29]  M. C. Stuart,et al.  Physical gels of telechelic triblock copolymers with precisely defined junction multiplicity , 2009 .

[30]  E. Canetta,et al.  pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid. , 2009, ACS applied materials & interfaces.

[31]  K. Matyjaszewski,et al.  The development of microgels/nanogels for drug delivery applications , 2008 .

[32]  Jean-Pierre Sauvage,et al.  Transition metal complexes as molecular machine prototypes. , 2007, Chemical Society reviews.

[33]  S. Rowan,et al.  Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. , 2006, Journal of the American Chemical Society.

[34]  Shin-ichiro Kawano,et al.  A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. , 2004, Journal of the American Chemical Society.

[35]  Yu Liu,et al.  Binding ability and assembly behavior of beta-cyclodextrin complexes with 2,2'-dipyridine and 4,4'-dipyridine. , 2004, The Journal of organic chemistry.

[36]  A. Marsura,et al.  New scaffolds for supramolecular chemistry: upper-rim fully tethered 5-methyleneureido-5'-methyl-2,2'-bipyridyl cyclodextrins. , 2002, Chemistry.

[37]  J. Lehn Supramolecular polymer chemistry , 2001 .

[38]  G M Whitesides,et al.  Molecule-mimetic chemistry and mesoscale self-assembly. , 2001, Accounts of chemical research.

[39]  B. Rivas,et al.  Chelation properties of polymer complexes of poly(acrylic acid) with poly(acrylamide), and poly(acrylic acid) with poly(N,N‐dimethylacrylamide) , 1998 .

[40]  Abraham Nudelman,et al.  NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. , 1997, The Journal of organic chemistry.

[41]  T. Saegusa,et al.  Iron(II) bipyridyl-branched polyoxazoline complex as a thermally reversible hydrogel , 1993 .

[42]  Y. Matsui,et al.  Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution. , 1979 .

[43]  M. Hetzer,et al.  Complex macromolecular architecture design via cyclodextrin host/guest complexes , 2014 .

[44]  Akira Harada,et al.  Macroscopic self-assembly through molecular recognition. , 2011, Nature chemistry.

[45]  Albert P H J Schenning,et al.  Supramolecular polymerization. , 2009, Chemical reviews.

[46]  E. Millan,et al.  Peeling performance of a novel light switchable pressure-sensitive adhesive , 2001 .

[47]  S. Mann Biological Inorganic Chemistry: Structure and Reactivity , 2001 .

[48]  H. Hiller In: Ullmann''''s Encyclopedia of Industrial Chemistry , 1989 .

[49]  W. Mcbryde A CRITICAL REVIEW OF EQUILIBRIUM DATA FOR PROTON- AND METAL COMPLEXES OF 1,10-PHENANTHROLINE, 2,2′-BIPYRIDYL AND RELATED COMPOUNDS , 1978 .

[50]  H. Irving,et al.  1002. The stability of metal complexes of 1,10-phenanthroline and its analogues. Part I. 1,10-Phenanthroline and 2,2′-bipyridyl , 1962 .