BDDs and Automated Deduction

BDDs (binary decision diagrams) are a very successful tool for handling boolean functions, but one which has not yet attracted the attention of many automated deduction specialists. We give an overview of BDDs from an automated deduction perspective, showing what can be done with them in prepositional and first-order logic, and discuss the parallels to well-known methods like tableaux and resolution.

[1]  Marcello D'Agostino,et al.  Are tableaux an improvement on truth-tables? , 1992, J. Log. Lang. Inf..

[2]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[3]  G. Boole An Investigation of the Laws of Thought: On which are founded the mathematical theories of logic and probabilities , 2007 .

[4]  Hans Hermes,et al.  Introduction to mathematical logic , 1973, Universitext.

[5]  Olivier Coudert,et al.  A Logically Complete Reasoning Maintenance System Based on a Logical Constraint Solver , 1991, IJCAI.

[6]  Robert A. Kowalski,et al.  Linear Resolution with Selection Function , 1971, Artif. Intell..

[7]  Randal E. Bryant,et al.  Symbolic Boolean manipulation with ordered binary-decision diagrams , 1992, CSUR.

[8]  Kenneth L. McMillan,et al.  Symbolic model checking: an approach to the state explosion problem , 1992 .

[9]  Joachim Posegga,et al.  Deduktion mit Shannongraphen für Prädikatenlogik erster Stufe , 1993, DISKI.

[10]  Jean Goubault-Larrecq Proving with BDDs and Control of Information , 1994, CADE.

[11]  Lawrence J. Henschen,et al.  What Is Automated Theorem Proving? , 1985, J. Autom. Reason..

[12]  Peter H. Schmitt,et al.  Automated Deduction with Shannon Graphs , 1995, J. Log. Comput..

[13]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[14]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[15]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[16]  Claude E. Shannon,et al.  A symbolic analysis of relay and switching circuits , 1938, Transactions of the American Institute of Electrical Engineers.

[17]  Joachim Posegga Compiling Proof Search in Semantic Tableaux , 1993, ISMIS.

[18]  Randal E. Bryant,et al.  Efficient implementation of a BDD package , 1991, DAC '90.

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[21]  George Boole,et al.  An Investigation of the Laws of Thought: Frontmatter , 2009 .

[22]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[23]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[24]  Jean Goubault,et al.  Syntax Independent Connections , 1993 .

[25]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .