Trace element analysis of high-Mg olivine by LA-ICP-MS – Characterization of natural olivine standards for matrix-matched calibration and application to mantle peridotites

[1]  D. Garbe‐Schönberg,et al.  New Olivine Reference Material for In Situ Microanalysis , 2019, Geostandards and Geoanalytical Research.

[2]  J. Petrus,et al.  Ultrafast, > 50 Hz LA‐ICP‐MS Spot Analysis Applied to U–Pb Dating of Zircon and other U‐Bearing Minerals , 2019, Geostandards and Geoanalytical Research.

[3]  S. Tappe,et al.  Olivine trace element compositions in diamondiferous lamproites from India: Proxies for magma origins and the nature of the lithospheric mantle beneath the Bastar and Dharwar cratons , 2019, Lithos.

[4]  J. Hermann,et al.  The role of trace elements in controlling H incorporation in San Carlos olivine , 2018, Contributions to Mineralogy and Petrology.

[5]  B. Kjarsgaard,et al.  Trace metal and isotopic depth profiles through the Abitibi cratonic mantle , 2018, Lithos.

[6]  S. Foley,et al.  Insights into the petrogenesis of the West Kimberley lamproites from trace elements in olivine , 2018, Mineralogy and Petrology.

[7]  D. Pearson,et al.  The uniquely high-temperature character of Cullinan diamonds: A signature of the Bushveld mantle plume? , 2018 .

[8]  G. Howarth,et al.  Discriminating between pyroxenite and peridotite sources for continental flood basalts (CFB) in southern Africa using olivine chemistry , 2017 .

[9]  B. Kamber,et al.  Rare Earth Element Determination in Olivine by Laser Ablation‐Quadrupole‐ICP‐MS: An Analytical Strategy and Applications , 2017 .

[10]  A. Sobolev,et al.  The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs , 2017 .

[11]  B. Kjarsgaard,et al.  The aluminum-in-olivine thermometer for mantle peridotites — Experimental versus empirical calibration and potential applications , 2017 .

[12]  B. Kjarsgaard,et al.  Age, origin, and thermal evolution of the ultra-fresh ~ 1.9 Ga Winnipegosis Komatiites, Manitoba, Canada , 2017 .

[13]  D. Prelević,et al.  Variation of olivine composition in the volcanic rocks in the Songliao basin, NE China: lithosphere control on the origin of the K-rich intraplate mafic lavas , 2016 .

[14]  S. Goldstein,et al.  Key new pieces of the HIMU puzzle from olivines and diamond inclusions , 2016, Nature.

[15]  W. Griffin,et al.  Sulfur isotope composition of metasomatised mantle xenoliths from the Bultfontein kimberlite (Kimberley, South Africa): Contribution from subducted sediments and the effect of sulfide alteration on S isotope systematics , 2016 .

[16]  D. Jacob,et al.  Low Ni olivine in silica-undersaturated ultrapotassic igneous rocks as evidence for carbonate metasomatism in the mantle , 2016 .

[17]  A. Giuliani,et al.  Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths , 2016 .

[18]  M. Frische,et al.  Experimental evaluation of elemental behavior during LA-ICP-MS: influences of plasma conditions and limits of plasma robustness , 2016 .

[19]  A. Sobolev,et al.  Trace element analysis of olivine: High precision analytical method for JEOL JXA-8230 electron probe microanalyser , 2015 .

[20]  S. Foley,et al.  The olivine macrocryst problem: New insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada , 2015 .

[21]  A. Giuliani,et al.  LIMA U-Pb ages link lithospheric mantle metasomatism to Karoo magmatism beneath the Kimberley region, South Africa , 2014 .

[22]  L. A. Coogan,et al.  Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces , 2014 .

[23]  D. Jacob,et al.  Minor and trace elements in olivines as probes into early igneous and mantle melting processes , 2013 .

[24]  Norman J. Pearson,et al.  The hole story about laser ablation ICP-MS , 2013 .

[25]  M. Andreae,et al.  Investigation of matrix effects in 193 nm laser ablation-inductively coupled plasma-mass spectrometry analysis using reference glasses of different transparencies , 2012 .

[26]  H. O’Neill,et al.  Major and trace analysis of basaltic glasses by laser‐ablation ICP‐MS , 2012 .

[27]  T. Pettke,et al.  Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS , 2012 .

[28]  A. Giuliani,et al.  Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S–Cl-rich C–O–H fluids , 2012, Contributions to Mineralogy and Petrology.

[29]  D. Günther,et al.  Determination of Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines , 2011 .

[30]  J. Hellstrom,et al.  Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .

[31]  D. Jacob,et al.  Trace element variations in olivine phenocrysts from Ugandan potassic rocks as clues to the chemical characteristics of parental magmas , 2011 .

[32]  Shan Gao,et al.  Contrasting matrix induced elemental fractionation in NIST SRM and rock glasses during laser ablation ICP-MS analysis at high spatial resolution , 2011 .

[33]  D. Cornell,et al.  Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry , 2010 .

[34]  M. Humayun,et al.  Elemental fractionation during LA-ICP-MS analysis of silicate glasses: implications for matrix-independent standardization , 2009 .

[35]  M. Shelley,et al.  Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell , 2009 .

[36]  L. A. Coogan,et al.  Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer , 2008 .

[37]  S. Jackson Calibration strategies for elemental analysis by LA-ICP-MS , 2008 .

[38]  D. Günther,et al.  Preliminary Characterisation of New Glass Reference Materials (GSA‐1G, GSC‐1G, GSD‐1G and GSE‐1G) by Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry Using 193 nm, 213 nm and 266 nm Wavelengths , 2005 .

[39]  A. Sobolev,et al.  An olivine-free mantle source of Hawaiian shield basalts , 2005, Nature.

[40]  T. Stachel,et al.  Inclusions in sublithospheric diamonds: Glimpses of deep Earth , 2005 .

[41]  Detlef Günther,et al.  Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry , 2005 .

[42]  Detlef Günther,et al.  Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry , 2003 .

[43]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[44]  D. Günther,et al.  Application of a particle separation device to reduce inductively coupled plasma-enhanced elemental fractionation in laser ablation-inductively coupled plasma-mass spectrometry , 2003 .

[45]  A. Mank,et al.  A critical assessment of laser ablation ICP-MS as an analytical tool for depth analysis in silica-based glass samples , 1999 .

[46]  J. S. Kane A History of the Development and Certification of NIST Glass SRMs 610‐617 , 1998 .

[47]  T. May,et al.  A Table of Polyatomic Interferences in ICP-MS , 1998 .

[48]  W. Griffin,et al.  QUANTITATIVE ANALYSIS OF TRACE ELEMENTS IN GEOLOGICAL MATERIALS BY LASER ABLATION ICPMS: INSTRUMENTAL OPERATING CONDITIONS AND CALIBRATION VALUES OF NIST GLASSES , 1996 .

[49]  H. Longerich,et al.  The design, operation and role of the laser-ablation microprobe coupled with an inductively coupled plasma-mass spectrometer (LAM- ICP-MS) in the Earth sciences , 1995 .

[50]  G. Dreibus,et al.  THE ABUNDANCES OF MAJOR, MINOR, AND TRACE ELEMENTS IN THE EARTH'S MANTLE AS DERIVED FROM PRIMITIVE ULTRAMAFIC NODULES. , 1979 .

[51]  F. R. Boyd,et al.  Composition and origin of crystalline inclusions in natural diamonds , 1972 .

[52]  A. Ringwood Mineralogy of the Mantle , 1966 .