A set of monolithic stationary phases representing a broad span of monomers and porogens have been characterized directly in their capillary chromatographic format by computational assessment of their pore structure from transmission electron micrographs obtained after in situ embedment of the monoliths in contrast resin, followed by dissolution of the fused-silica tubing, further encasement of the resin-embedded monolith, and microtomy. This technique has been compared to mercury intrusion, a more conventional technique for macroporosity estimation. Supplementing the embedding resin by lead methacrylate gave a negative staining, and the resulting micrographs showed a good contrast between the polymeric monoliths and the embedding resin that allowed studies on the pore formation and polymer development. The technique was also applied to a commercial monolithic silica column.