ADAPTIVE FILTERING WITH ADAPTIVE p-POWER ERROR CRITERION

In a previous paper, we have proposed a novel approach to choose an optimal p-power error criterion for adaptive filtering, by minimizing a Kullback-Leibler information divergence (KL-divergence). However, the method requires exact knowledge of the noise PDF, which reduces its practicality since in real life scenario the noise distribution is usually unknown. In the present paper, we propose a more practicable method, in which the optimal p value is approximately determined by using the error samples on-line, without resorting to a priori knowledge of the noise. The mean-square convergence of the proposed algorithm is studied, and an upper bound of the step-size is derived. Monte Carlo simulation results confirm the effectiveness and superiority of the new method.

[1]  Zeng-qi Sun,et al.  Information Theoretic Interpretation of Error Criteria , 2009 .

[2]  Anthony G. Constantinides,et al.  A class of stochastic gradient algorithms with exponentiated error cost functions , 2009, Digit. Signal Process..

[3]  A. Ikuta,et al.  FUZZY ADAPTIVE FILTER FOR STATE ESTIMATION OF SOUND ENVIRONMENT SYSTEM AND ITS APPLICATION TO PSYCHOLOGICAL EVALUATION , 2009 .

[4]  Shiahn-Wern Shyue,et al.  An Adaptive Filtering and Terrain Recovery Approach for Airborne LiDAR Data , 2008 .

[5]  韩建达,et al.  Adaptive UKF Based Tracking Control for Unmanned Trimaran Vehicles , 2008 .

[6]  Zengqi Sun,et al.  Stochastic Gradient Algorithm Under (h,φ)-Entropy Criterion , 2007 .

[7]  Rabab K. Ward,et al.  14 FROM LINEAR ADAPTIVE FILTERING TO NONLINEAR INFORMATION PROCESSING , 2006 .

[8]  Asoke K. Nandi,et al.  Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling , 2005, Signal Process..

[9]  Tareq Y. Al-Naffouri,et al.  Transient analysis of data-normalized adaptive filters , 2003, IEEE Trans. Signal Process..

[10]  Tareq Y. Al-Naffouri,et al.  Transient analysis of adaptive filters with error nonlinearities , 2003, IEEE Trans. Signal Process..

[11]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[12]  Ali H. Sayed,et al.  A unified approach to the steady-state and tracking analyses of adaptive filters , 2001, IEEE Trans. Signal Process..

[13]  Tareq Y. Al-Naffouri,et al.  Adaptive Filters with Error Nonlinearities: Mean-Square Analysis and Optimum Design , 2001, EURASIP J. Adv. Signal Process..

[14]  John W. Fisher,et al.  Learning from Examples with Information Theoretic Criteria , 2000, J. VLSI Signal Process..

[15]  信太 克規,et al.  Adaptive Algorithm Based on Least Mean p-Power Error Criterion for Fourier Analysis in Additive Noise , 1998 .

[16]  Thomas R. Fischer,et al.  Comparison of generalized Gaussian and Laplacian modeling in DCT image coding , 1995, IEEE Signal Processing Letters.

[17]  Alberto Leon-Garcia,et al.  Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video , 1995, IEEE Trans. Circuits Syst. Video Technol..

[18]  Chien-Cheng Tseng,et al.  Least mean p-power error criterion for adaptive FIR filter , 1994, IEEE J. Sel. Areas Commun..

[19]  A. Constantinides,et al.  Least mean mixed-norm adaptive filtering , 1994 .

[20]  Teresa H. Y. Meng,et al.  Stochastic gradient adaptation under general error criteria , 1994, IEEE Trans. Signal Process..

[21]  C. L. Nikias,et al.  Signal processing with fractional lower order moments: stable processes and their applications , 1993, Proc. IEEE.

[22]  B. Widrow,et al.  Adaptive inverse control , 1987, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[23]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[24]  M. Varanasi,et al.  Parametric generalized Gaussian density estimation , 1989 .

[25]  Bernard Widrow,et al.  The least mean fourth (LMF) adaptive algorithm and its family , 1984, IEEE Trans. Inf. Theory.

[26]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[27]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .