THE FOCUSING NONLINEAR SCHRÖDINGER EQUATION ON THE QUARTER PLANE WITH TIME-PERIODIC BOUNDARY CONDITION: A RIEMANN–HILBERT APPROACH

We consider the focusing nonlinear Schrödinger equation on the quarter plane. Initial data vanish at infinity while boundary data are time-periodic. The main goal of this paper is to introduce a Riemann–Hilbert problem whose solution gives the solution of our initial–boundary-value problem. This is a preliminary step to obtain uniform long-time asymptotics for the solution of this equation using both the stationary phase and the Deift–Zhou methods.

[1]  Dmitry Shepelsky,et al.  Integrable Nonlinear Evolution Equations on a Finite Interval , 2006 .

[2]  A. B. D. Monvel,et al.  THE mKdV EQUATION ON THE HALF-LINE , 2004, Journal of the Institute of Mathematics of Jussieu.

[3]  A. B. D. Monvel,et al.  Initial boundary value problem for the mKdV equation on a finite interval , 2004 .

[4]  A. S. Fokas,et al.  Analysis of the Global Relation for the Nonlinear Schrödinger Equation on the Half-line , 2003 .

[5]  A. B. D. Monvel,et al.  Generation of asymptotic solitons of the nonlinear Schrödinger equation by boundary data , 2003 .

[6]  David J. Kaup,et al.  Virtual solitons and the asymptotics of second harmonic generation , 2001 .

[7]  A. B. D. Monvel,et al.  Scattering problem for the Zakharov-Shabat equations on the semi-axis , 2000 .

[8]  A. Fokas On the integrability of linear and nonlinear partial differential equations , 2000 .

[9]  M. Mintchev,et al.  The Nonlinear Schrodinger Equation on the Half Line , 1998, hep-th/9811188.

[10]  A. S. Fokas,et al.  A unified transform method for solving linear and certain nonlinear PDEs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  A. Fokas,et al.  The linearization of the initial-boundary value problem of the nonlinear Schro¨dinger equation , 1996 .

[12]  Percy Deift,et al.  Long-Time Asymptotics for Integrable Nonlinear Wave Equations , 1993 .

[13]  A. Fokas,et al.  An initial-boundary value problem for the sine-Gordon equation in laboratory coordinates , 1992 .

[14]  P. Deift,et al.  A steepest descent method for oscillatory Riemann-Hilbert problems , 1992, math/9201261.

[15]  R. Dodd,et al.  Review: L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons , 1988 .

[16]  Leon A. Takhtajan,et al.  Hamiltonian methods in the theory of solitons , 1987 .

[17]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .