Self-localization in non-stationary environments using omni-directional vision

This paper presents an image-based approach for localization in non-static environments using local feature descriptors, and its experimental evaluation in a large, dynamic, populated environment where the time interval between the collected data sets is up to two months. By using local features together with panoramic images, robustness and invariance to large changes in the environment can be handled. Results from global place recognition with no evidence accumulation and a Monte Carlo localization method are shown. To test the approach even further, experiments were conducted with up to 90% virtual occlusion in addition to the dynamic changes in the environment.

[1]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Tom Duckett,et al.  Mobile robot self-localisation and measurement of performance in middle-scale environments , 1998, Robotics Auton. Syst..

[3]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[4]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[5]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[6]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[7]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[8]  Tom Duckett,et al.  3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[9]  Emanuele Menegatti,et al.  Image-based Monte Carlo localisation with omnidirectional images , 2004, Robotics Auton. Syst..

[10]  Ales Leonardis,et al.  Mobile robot localization using an incremental eigenspace model , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[11]  Illah R. Nourbakhsh,et al.  DERVISH - An Office-Navigating Robot , 1995, AI Mag..

[12]  Wolfram Burgard,et al.  Robust vision-based localization by combining an image-retrieval system with Monte Carlo localization , 2005, IEEE Transactions on Robotics.

[13]  Simon Lacroix,et al.  Rover localization in natural environments by indexing panoramic images , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[14]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[15]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[16]  Horst-Michael Groß,et al.  Omnivision-based probabilistic self-localization for a mobile shopping assistant continued , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[17]  Ben J. A. Kröse,et al.  A probabilistic model for appearance-based robot localization , 2001, Image Vis. Comput..

[18]  J. Gaspar,et al.  Omni-directional vision for robot navigation , 2000, Proceedings IEEE Workshop on Omnidirectional Vision (Cat. No.PR00704).

[19]  Peter K. Allen,et al.  Topological mobile robot localization using fast vision techniques , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[20]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[21]  Ben J. A. Kröse,et al.  Auxiliary particle filter robot localization from high-dimensional sensor observations , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[22]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[23]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[24]  Jana Kosecka,et al.  Vision based topological Markov localization , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[25]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[26]  Robert Laganière,et al.  An Empirical Study of Some Feature Matching Strategies , 2002 .

[27]  Joachim Hertzberg,et al.  Robust localization using context in omnidirectional imaging , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[28]  Thomas S. Huang,et al.  Image processing , 1971 .

[29]  E.E. Pissaloux,et al.  Image Processing , 1994, Proceedings. Second Euromicro Workshop on Parallel and Distributed Processing.