Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications
暂无分享,去创建一个
[1] Alex Samorodnitsky,et al. A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.
[2] Heinz H. Bauschke,et al. Hyperbolic Polynomials and Convex Analysis , 2001, Canadian Journal of Mathematics.
[3] David G. Wagner,et al. Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..
[4] Ravindra B. Bapat,et al. Mixed discriminants of positive semidefinite matrices , 1989 .
[5] Leonid Gurvits,et al. Combinatorics hidden in hyperbolic polynomials and related topics , 2004 .
[6] Leonid Gurvits. The Van der Waerden conjecture for mixed discriminants , 2004 .
[7] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[8] L. Gårding. An Inequality for Hyperbolic Polynomials , 1959 .
[9] James Renegar,et al. Hyperbolic Programs, and Their Derivative Relaxations , 2006, Found. Comput. Math..
[10] R. Bhatia. Matrix Analysis , 1996 .
[11] Alexander I. Barvinok,et al. Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.
[12] Osman Güler,et al. Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..
[13] A. Schrijver,et al. On lower bounds for permanents , 1979 .
[14] Alexander Schrijver,et al. Counting 1-Factors in Regular Bipartite Graphs , 1998, J. Comb. Theory B.
[15] V. Vinnikov. Self-adjoint determinantal representations of real plane curves , 1993 .
[16] U. Rothblum,et al. On complexity of matrix scaling , 1999 .
[17] Alexander I. Barvinok,et al. Two Algorithmic Results for the Traveling Salesman Problem , 1996, Math. Oper. Res..
[18] Alex Samorodnitsky,et al. A deterministic polynomial-time algorithm for approximating mixed discriminant and mixed volume , 2000, STOC '00.
[19] G. Egorychev. The solution of van der Waerden's problem for permanents , 1981 .
[20] D. Falikman. Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .
[21] Brendan D. McKay,et al. Maximising the Permanent of (0, 1)-Matrices and the Number of Extensions of Latin Rectangles , 1998, Electron. J. Comb..
[22] L. Hörmander. Analysis of Linear Partial Differential Operators II , 2005 .
[23] Leonid Gurvits. Combinatorial and algorithmic aspects of hyperbolic polynomials , 2004, Electron. Colloquium Comput. Complex..
[24] L. Hörmander. The analysis of linear partial differential operators , 1990 .
[25] William H. Cunningham,et al. Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra , 1995, SIAM J. Discret. Math..
[26] Alexander I. Barvinok,et al. Computing Mixed Discriminants, Mixed Volumes, and Permanents , 1997, Discret. Comput. Geom..
[27] A. Lewis,et al. The lax conjecture is true , 2003, math/0304104.
[28] M. Voorhoeve,et al. A lower bound for the permanents of certain (0,1)-matrices , 1978 .
[29] R. Schneider. Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .
[30] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[31] L. Gurvits,et al. The Deeation-innation Method for Certain Semideenite Programming and Maximum Determinant Completion Problems , 1998 .
[32] J. Helton,et al. Linear matrix inequality representation of sets , 2003, math/0306180.
[33] Alex Samorodnitsky,et al. A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..
[34] H. Wilf. On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.