Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications

Let p(x<sub>1</sub>,...,x<sub>n</sub>) = p(X) , X ∈ R<sup>n</sup> be a homogeneous polynomial of degree n in n real variables, e = (1,1,..,1) ∈ R<sup>n</sup> be a vector of all ones . Such a polynomial p is called e-hyperbolic if for all real vectors X ∈ R<sup>n</sup> the univariate polynomial equation p(te - X) = 0 has all real roots λ<sub>1</sub>(X) ≥ ... ≥ λ<sub>n</sub>(X). The number of nonzero roots |i :λ<sub>i</sub>(X) ≠ 0 | is called Rank<sub>p</sub>(X). An e-hyperbolic polynomial p is called POS-hyperbolic if roots of vectors X ∈ R<sup>n</sup><sub>+</sub> with nonnegative coordinates are also nonnegative (the orthant R<sup>n</sup><sub>+</sub> belongs to the hyperbolic cone) and p(e) > 0. Below e<sub>1</sub>,...,e<sub>n</sub> stands for the canonical orthogonal basis in R<sup>n</sup>. The main results of this paper states that if p(x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>) is a POS-hyperbolic (homogeneous) polynomial of degree n, Rank<sub>p</sub> (e<sub>i</sub>) = R<sub>i</sub> and p(x<sub>1</sub>,x<sub>2</sub>,...,x<sub>n</sub>) ≥ ∏<sub>1 ≤ i ≤ n</sub> x<sub>i</sub> ; x<sub>i</sub> > 0, 1 ≤ i ≤ n, then the following inequality holds ∂<sup>n</sup>/∂ x<sub>1</sub>...∂ x<sub>n</sub> p(0,...,0) ≥ ∏<sub>1 ≤ i ≤ n</sub> (G<sub>i</sub>-1/G<sub>i</sub>)<sup>G</sup>i<sub>-1</sub>, where G<sub>i</sub> = min(R<sub>i</sub> , n+1-i) . This inequality is a vast (and unifying) generalization of the van der Waerden conjecture on the permanents of doubly stochastic matrices as well as the Schrijver-Valiant conjecture on the number of perfect matchings in k-regular bipartite graphs. These two famous results correspond to the POS-hyperbolic polynomials which are products of linear forms with nonnegative coefficients.Our proof is relatively simple and "noncomputational"; it actually slightly improves Schrijver's lower bound, and uses very basic (more or less centered around Rolle's theorem) properties of hyperbolic polynomials. We present some important algorithmic applications of the result, including a polynomial time deterministic algorithm approximating the permanent of n x n entry-wise non-negative matrices within a multiplicative factor e<sup>n</sup>/n<sup>m</sup> for any fixed positive m; and a deterministic poly-time algorithm approximating the permanent of n x n matrix A having at most k nonzero entries in each column to within a multiplicative factor (k-1/k)<sup>(k-1)n</sup>.This paper introduces a new powerful "polynomial" technique , which allows us to simplify and unify hard and key known results as well as to prove new important theorems and get new algorithms.

[1]  Alex Samorodnitsky,et al.  A Deterministic Strongly Polynomial Algorithm for Matrix Scaling and Approximate Permanents , 1998, STOC '98.

[2]  Heinz H. Bauschke,et al.  Hyperbolic Polynomials and Convex Analysis , 2001, Canadian Journal of Mathematics.

[3]  David G. Wagner,et al.  Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..

[4]  Ravindra B. Bapat,et al.  Mixed discriminants of positive semidefinite matrices , 1989 .

[5]  Leonid Gurvits,et al.  Combinatorics hidden in hyperbolic polynomials and related topics , 2004 .

[6]  Leonid Gurvits The Van der Waerden conjecture for mixed discriminants , 2004 .

[7]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[8]  L. Gårding An Inequality for Hyperbolic Polynomials , 1959 .

[9]  James Renegar,et al.  Hyperbolic Programs, and Their Derivative Relaxations , 2006, Found. Comput. Math..

[10]  R. Bhatia Matrix Analysis , 1996 .

[11]  Alexander I. Barvinok,et al.  Polynomial Time Algorithms to Approximate Permanents and Mixed Discriminants Within a Simply Exponential Factor , 1999, Random Struct. Algorithms.

[12]  Osman Güler,et al.  Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..

[13]  A. Schrijver,et al.  On lower bounds for permanents , 1979 .

[14]  Alexander Schrijver,et al.  Counting 1-Factors in Regular Bipartite Graphs , 1998, J. Comb. Theory B.

[15]  V. Vinnikov Self-adjoint determinantal representations of real plane curves , 1993 .

[16]  U. Rothblum,et al.  On complexity of matrix scaling , 1999 .

[17]  Alexander I. Barvinok,et al.  Two Algorithmic Results for the Traveling Salesman Problem , 1996, Math. Oper. Res..

[18]  Alex Samorodnitsky,et al.  A deterministic polynomial-time algorithm for approximating mixed discriminant and mixed volume , 2000, STOC '00.

[19]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[20]  D. Falikman Proof of the van der Waerden conjecture regarding the permanent of a doubly stochastic matrix , 1981 .

[21]  Brendan D. McKay,et al.  Maximising the Permanent of (0, 1)-Matrices and the Number of Extensions of Latin Rectangles , 1998, Electron. J. Comb..

[22]  L. Hörmander Analysis of Linear Partial Differential Operators II , 2005 .

[23]  Leonid Gurvits Combinatorial and algorithmic aspects of hyperbolic polynomials , 2004, Electron. Colloquium Comput. Complex..

[24]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[25]  William H. Cunningham,et al.  Delta-Matroids, Jump Systems, and Bisubmodular Polyhedra , 1995, SIAM J. Discret. Math..

[26]  Alexander I. Barvinok,et al.  Computing Mixed Discriminants, Mixed Volumes, and Permanents , 1997, Discret. Comput. Geom..

[27]  A. Lewis,et al.  The lax conjecture is true , 2003, math/0304104.

[28]  M. Voorhoeve,et al.  A lower bound for the permanents of certain (0,1)-matrices , 1978 .

[29]  R. Schneider Convex Bodies: The Brunn–Minkowski Theory: Minkowski addition , 1993 .

[30]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[31]  L. Gurvits,et al.  The Deeation-innation Method for Certain Semideenite Programming and Maximum Determinant Completion Problems , 1998 .

[32]  J. Helton,et al.  Linear matrix inequality representation of sets , 2003, math/0306180.

[33]  Alex Samorodnitsky,et al.  A Deterministic Algorithm for Approximating the Mixed Discriminant and Mixed Volume, and a Combinatorial Corollary , 2002, Discret. Comput. Geom..

[34]  H. Wilf On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.