Optimization of electrical grid protection by a differential evolution algorithm

A modified binary differential evolution scheme is devised to identify an optimal protection strategy that minimizes the consequences of cascading failures on an electrical grid. The 380 kV Italian power transmission network is employed as a realistic test case for the suggested protection strategy.

[1]  Antonin Ponsich,et al.  Differential Evolution performances for the solution of mixed-integer constrained process engineering problems , 2011, Appl. Soft Comput..

[2]  H. Glavitsch,et al.  Security enhancement using an optimal switching power flow , 1989, Conference Papers Power Industry Computer Application Conference.

[3]  L. Freeman,et al.  Centrality in valued graphs: A measure of betweenness based on network flow , 1991 .

[4]  B. Babu,et al.  Strategies of Multi-Objective Differential Evolution (MODE) for Optimization of Adiabatic Styrene Reactor , 2007 .

[5]  Adilson E Motter Cascade control and defense in complex networks. , 2004, Physical review letters.

[6]  Adilson E Motter,et al.  Cascade-based attacks on complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Richard G. Little,et al.  Controlling Cascading Failure: Understanding the Vulnerabilities of Interconnected Infrastructures , 2002 .

[9]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[10]  E. Arbaretier,et al.  Modeling failure cascades in network systems due to distributed random disturbances , 2008 .

[11]  Minrui Fei,et al.  A Modified Binary Differential Evolution Algorithm , 2010, LSMS/ICSEE.

[12]  Mehmet Polat Saka,et al.  Optimum design of steel sway frames to BS5950 using harmony search algorithm , 2009 .

[13]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[14]  Mario Montagna,et al.  Optimal network reconfiguration for congestion management by deterministic and genetic algorithms , 2006 .

[15]  Jay Apt,et al.  Cascading Failures: Survival versus Prevention , 2003 .

[16]  G. Sabidussi The centrality of a graph. , 1966, Psychometrika.

[17]  Massimo Marchiori,et al.  Vulnerability and protection of infrastructure networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  V. Vittal,et al.  Corrective switching algorithm for relieving overloads and voltage violations , 2005, IEEE Transactions on Power Systems.

[19]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[20]  J. Salmeron,et al.  Analysis of electric grid security under terrorist threat , 2004, IEEE Transactions on Power Systems.

[21]  Réka Albert,et al.  Structural vulnerability of the North American power grid. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Vladimir Batagelj,et al.  Semirings for social networks analysis , 1994 .

[23]  Enrico Zio,et al.  Modeling failure cascades in critical infrastructures with physically-characterized components and interdependencies , 2010 .

[24]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[25]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Leonardo Dueñas-Osorio,et al.  Cascading failures in complex infrastructure systems , 2009 .

[27]  L. Coelho,et al.  An improved harmony search algorithm for synchronization of discrete-time chaotic systems , 2009 .

[28]  H. Glavitsch,et al.  Integrated security control using an optimal power flow and switching concepts , 1988 .