Dynamics, nucleosynthesis, and kilonova signature of black hole—neutron star merger ejecta

We investigate the ejecta from black hole—neutron star mergers by modeling the formation and interaction of mass ejected in a tidal tail and a disk wind. The outflows are neutron-rich, giving rise to optical/infrared emission powered by the radioactive decay of r-process elements (a kilonova). Here we perform an end-to-end study of this phenomenon, where we start from the output of a fully-relativistic merger simulation, calculate the post-merger hydrodynamical evolution of the ejecta and disk winds including neutrino physics, determine the final nucleosynthetic yields using post-processing nuclear reaction network calculations, and compute the kilonova emission with a radiative transfer code. We study the effects of the tail-to-disk mass ratio by scaling the tail density. A larger initial tail mass results in fallback matter becoming mixed into the disk and ejected in the subsequent disk wind. Relative to the case of a disk without dynamical ejecta, the combined outflow has lower mean electron fraction, faster speed, larger total mass, and larger absolute mass free of high-opacity Lanthanides or Actinides. In most cases, the nucleosynthetic yield is dominated by the heavy r-process contribution from the unbound part of the dynamical ejecta. A Solar-like abundance distribution can however be obtained when the total mass of the dynamical ejecta is comparable to the mass of the disk outflows. The kilonova has a characteristic duration of 1 week and a luminosity of  ~10^(41) erg s^(-1), with orientation effects leading to variations of a factor  ~2 in brightness. At early times (<1 d) the emission includes an optical component from the (hot) Lanthanide-rich material, but the spectrum evolves quickly to the infrared thereafter.

[1]  Canada,et al.  Fission barriers of neutron-rich and superheavy nuclei calculated with the ETFSI method , 2000 .

[2]  B. Metzger,et al.  Delayed outflows from black hole accretion tori following neutron star binary coalescence , 2013, 1304.6720.

[3]  Lawrence E. Kidder,et al.  Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations , 2016, 1607.07450.

[4]  R. Thomas,et al.  Time-dependent Monte Carlo Radiative Transfer Calculations for Three-dimensional Supernova Spectra, Light Curves, and Polarization , 2006, astro-ph/0606111.

[5]  Rodrigo Fernandez,et al.  Kilonova light curves from the disc wind outflows of compact object mergers , 2014, 1411.3726.

[6]  Luciano Rezzolla,et al.  Dynamical Mass Ejection from Binary Neutron Star Mergers , 2016, 1601.02426.

[7]  C. Palenzuela,et al.  Unequal mass binary neutron star mergers and multimessenger signals , 2016, 1603.00501.

[8]  B. Metzger,et al.  Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers , 2016, 1607.05290.

[9]  William H. Lee,et al.  PHASE TRANSITIONS AND He-SYNTHESIS-DRIVEN WINDS IN NEUTRINO COOLED ACCRETION DISKS: PROSPECTS FOR LATE FLARES IN SHORT GAMMA-RAY BURSTS , 2009, 0904.3752.

[10]  B. Metzger,et al.  Time-dependent models of accretion discs formed from compact object mergers , 2008, 0805.4415.

[11]  K. Ioka,et al.  Anisotropic mass ejection from black hole-neutron star binaries: Diversity of electromagnetic counterparts , 2013, 1305.6309.

[12]  B. Metzger,et al.  Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger , 2014, 1402.4803.

[13]  F. Swesty,et al.  A Generalized equation of state for hot, dense matter , 1991 .

[14]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[15]  C. Ott,et al.  LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC) , 2015, 1505.06746.

[16]  K. Langanke,et al.  Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range in supernovae environments , 2000, nucl-th/0001018.

[17]  B. Metzger,et al.  The effects of r-process heating on fallback accretion in compact object mergers , 2009, 0908.0530.

[18]  A.C.Wahl Systematics of Fission-Product Yields , 2002 .

[19]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[20]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[21]  K. Hotokezaka,et al.  RADIOACTIVELY POWERED EMISSION FROM BLACK HOLE–NEUTRON STAR MERGERS , 2013, 1310.2774.

[22]  Brian D. Metzger,et al.  Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era , 2015, 1512.05435.

[23]  Lawrence E. Kidder,et al.  Black hole-neutron star mergers at realistic mass ratios: Equation of state and spin orientation effects , 2012, 1212.4810.

[24]  Andrew Siegel,et al.  Extensible component-based architecture for FLASH, a massively parallel, multiphysics simulation code , 2009, Parallel Comput..

[25]  K. Kawaguchi,et al.  MODELS OF KILONOVA/MACRONOVA EMISSION FROM BLACK HOLE–NEUTRON STAR MERGERS , 2016, 1601.07711.

[26]  R. Fern'andez,et al.  The interplay of disc wind and dynamical ejecta in the aftermath of neutron star–black hole mergers , 2014, 1412.5588.

[27]  Masaru Shibata,et al.  PRODUCTION OF ALL THE r-PROCESS NUCLIDES IN THE DYNAMICAL EJECTA OF NEUTRON STAR MERGERS , 2014, 1402.7317.

[28]  Katsuhiko Sato,et al.  Rate tables for the weak processes of sd-shell nuclei in stellar matter , 1994 .

[29]  Lawrence E. Kidder,et al.  Neutron star-black hole mergers with a nuclear equation of state and neutrino cooling: Dependence in the binary parameters , 2014, 1405.1121.

[30]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[31]  Ryan M. Ferguson,et al.  THE JINA REACLIB DATABASE: ITS RECENT UPDATES AND IMPACT ON TYPE-I X-RAY BURSTS , 2010, The Astrophysical Journal Supplement Series.

[32]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[33]  Beaver Court,et al.  High Energy Density , 1992 .

[34]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[35]  M. Shibata,et al.  Dynamical mass ejection from binary neutron star mergers: Radiation-hydrodynamics study in general relativity , 2015, 1502.06660.

[36]  K. Hotokezaka,et al.  Mass ejection from the merger of binary neutron stars , 2012, 1212.0905.

[37]  F. Douglas Swesty,et al.  The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .

[38]  F. Thielemann,et al.  Neutron-induced astrophysical reaction rates for translead nuclei , 2009, 0911.2181.

[39]  Harald P. Pfeiffer,et al.  Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite difference methods , 2008, 0809.0002.

[40]  S. Rosswog The multi-messenger picture of compact binary mergers , 2015, 1501.02081.

[41]  S. Shapiro,et al.  One-arm spiral instability in hypermassive neutron stars formed by dynamical-capture binary neutron star mergers , 2015, 1510.03432.

[42]  Francois Foucart,et al.  Black-hole-neutron-star mergers: Disk mass predictions , 2012, 1207.6304.

[43]  K. Thorne Multipole expansions of gravitational radiation , 1980 .

[44]  Rashid Sunyaev,et al.  Black holes in binary systems. Observational appearance , 1973 .

[45]  Lawrence E. Kidder,et al.  Post-merger evolution of a neutron star-black hole binary with neutrino transport , 2015, 1502.04146.

[46]  C. Palenzuela,et al.  Effects of the microphysical Equation of State in the mergers of magnetized Neutron Stars With Neutrino Cooling , 2015, 1505.01607.

[47]  Masaomi Tanaka Kilonova/Macronova Emission from Compact Binary Mergers , 2016, 1605.07235.

[48]  S. Rosswog,et al.  On the astrophysical robustness of the neutron star merger r-process , 2012, 1206.2379.

[49]  Chris L. Fryer,et al.  Relativistic opacities for astrophysical applications , 2015 .

[50]  W. Myers,et al.  Nuclear ground state masses and deformations , 1995 .

[51]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[52]  P. Harding,et al.  SHORT GRB 130603B: DISCOVERY OF A JET BREAK IN THE OPTICAL AND RADIO AFTERGLOWS, AND A MYSTERIOUS LATE-TIME X-RAY EXCESS , 2013, 1309.7479.

[53]  Meng-Ru Wu,et al.  RADIOACTIVITY AND THERMALIZATION IN THE EJECTA OF COMPACT OBJECT MERGERS AND THEIR IMPACT ON KILONOVA LIGHT CURVES , 2016, 1605.07218.

[54]  Lawrence E. Kidder,et al.  A new generalized harmonic evolution system , 2005, gr-qc/0512093.

[55]  W. Fowler,et al.  Stellar weak interaction rates for intermediate mass nuclei. III. Rate tables for the free nucleons and nuclei with A = 21 TO A = 60 , 1982 .

[56]  N. Metropolis,et al.  Calculations in the Liquid-Drop Model of Fission , 1947 .

[57]  E. Nakar,et al.  X-RAY-POWERED MACRONOVAE , 2015, 1508.05093.

[58]  Aya Bamba,et al.  Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission , 2015, 1511.05580.

[59]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[60]  S. Goriely Uncertainties in the solar system r-abundance distribution , 1999 .

[61]  J. Lippuner,et al.  r-PROCESS LANTHANIDE PRODUCTION AND HEATING RATES IN KILONOVAE , 2015, 1508.03133.

[62]  Oleg Korobkin,et al.  Neutrino-driven winds from neutron star merger remnants , 2014, 1405.6730.

[63]  Coalescing neutron stars { a step towards physical models II. Neutrino emission, neutron tori, and gamma-ray bursts , 1996, astro-ph/9606181.

[64]  M. Shibata,et al.  High resolution magnetohydrodynamic simulation of black hole-neutron star merger: Mass ejection and short gamma ray bursts , 2015, 1506.06811.

[65]  B. Metzger,et al.  Neutron-rich freeze-out in viscously spreading accretion discs formed from compact object mergers , 2008, 0810.2535.

[66]  K. Ioka,et al.  Dynamical mass ejection from black hole-neutron star binaries , 2015, 1502.05402.

[67]  G. Bjoernsson,et al.  Modified Newtonian Potentials for the Description of Relativistic Effects in Accretion Disks around Black Holes , 1996 .

[68]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[69]  Brian D. Metzger,et al.  Outflows from accretion discs formed in neutron star mergers: effect of black hole spin , 2014, 1409.4426.

[70]  D. Kasen,et al.  OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS , 2013, 1303.5788.

[71]  S. Rosswog Fallback accretion in the aftermath of a compact binary merger , 2007 .

[72]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[73]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[74]  C. Ott,et al.  NEUTRINO SIGNATURES AND THE NEUTRINO-DRIVEN WIND IN BINARY NEUTRON STAR MERGERS , 2008, 0806.4380.

[75]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[76]  H. Janka,et al.  Prompt merger collapse and the maximum mass of neutron stars. , 2013, Physical review letters.

[77]  M. Shibata,et al.  Truncated Moment Formalism for Radiation Hydrodynamics in Numerical Relativity , 2011, 1104.3937.

[78]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[79]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[80]  S. Teukolsky,et al.  Black hole-neutron star mergers for 10 M_☉ black holes , 2011, 1111.1677.

[81]  C. Ott,et al.  The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers , 2016, 1601.07942.

[82]  Tum,et al.  Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers , 2014, 1406.2687.

[83]  Lawrence E. Kidder,et al.  Black hole-neutron star mergers: Effects of the orientation of the black hole spin , 2010, 1007.4203.

[84]  B. Metzger,et al.  NUCLEAR DOMINATED ACCRETION FLOWS IN TWO DIMENSIONS. I. TORUS EVOLUTION WITH PARAMETRIC MICROPHYSICS , 2012, 1209.2712.