Role of Genomic Typing in Taxonomy, Evolutionary Genetics, and Microbial Epidemiology

SUMMARY Currently, genetic typing of microorganisms is widely used in several major fields of microbiological research. Taxonomy, research aimed at elucidation of evolutionary dynamics or phylogenetic relationships, population genetics of microorganisms, and microbial epidemiology all rely on genetic typing data for discrimination between genotypes. Apart from being an essential component of these fundamental sciences, microbial typing clearly affects several areas of applied microbiogical research. The epidemiological investigation of outbreaks of infectious diseases and the measurement of genetic diversity in relation to relevant biological properties such as pathogenicity, drug resistance, and biodegradation capacities are obvious examples. The diversity among nucleic acid molecules provides the basic information for all fields described above. However, researchers in various disciplines tend to use different vocabularies, a wide variety of different experimental methods to monitor genetic variation, and sometimes widely differing modes of data processing and interpretation. The aim of the present review is to summarize the technological and fundamental concepts used in microbial taxonomy, evolutionary genetics, and epidemiology. Information on the nomenclature used in the different fields of research is provided, descriptions of the diverse genetic typing procedures are presented, and examples of both conceptual and technological research developments for Escherichia coli are included. Recommendations for unification of the different fields through standardization of laboratory techniques are made.

[1]  R. S. Harris,et al.  Adaptive mutation by deletions in small mononucleotide repeats. , 1994, Science.

[2]  T. Whittam,et al.  Genetic evidence of clonal descent of Escherichia coli O157:H7 associated with hemorrhagic colitis and hemolytic uremic syndrome. , 1988, The Journal of infectious diseases.

[3]  J. Trimarchi,et al.  Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolymeric runs. , 1994, Science.

[4]  R. Sinden,et al.  Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Generation of genetic diversity by DNA rearrangements in resting bacteria , 1994 .

[6]  M. Struelens,et al.  Comparative and Library Epidemiological Typing Systems: Outbreak Investigations Versus Surveillance Systems , 1998, Infection Control & Hospital Epidemiology.

[7]  D. Botstein,et al.  Systematic changes in gene expression patterns following adaptive evolution in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Bull,et al.  Different trajectories of parallel evolution during viral adaptation. , 1999, Science.

[9]  D H Persing,et al.  Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing , 1995, Journal of clinical microbiology.

[10]  R. Lenski,et al.  Mutation, recombination, and incipient speciation of bacteria in the laboratory. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R. Lenski,et al.  Diminishing returns from mutation supply rate in asexual populations. , 1999, Science.

[12]  R. Lenski,et al.  Mechanisms of Punctuated Evolution , 1996, Science.

[13]  T. Jukes,et al.  The neutral theory of molecular evolution. , 2000, Genetics.

[14]  S Karlin,et al.  Heterogeneity of genomes: measures and values. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Berlyn,et al.  Linkage Map of Escherichia coli K-12, Edition 10: The Traditional Map , 1998, Microbiology and Molecular Biology Reviews.

[16]  T. Dobzhansky Genetics and the Origin of Species , 1937 .

[17]  R. Rosenzweig,et al.  Microbial evolution in a simple unstructured environment: genetic differentiation in Escherichia coli. , 1994, Genetics.

[18]  M. Tibayrenc,et al.  Towards a unified evolutionary genetics of microorganisms. , 1996, Annual review of microbiology.

[19]  Christopher G. Dowson,et al.  Localized sex in bacteria , 1991, Nature.

[20]  Joel Cracraft,et al.  Species Concepts and Speciation Analysis , 1983 .

[21]  J. Eshleman,et al.  Microsatellite instability in inherited and sporadic neoplasms. , 1995, Current opinion in oncology.

[22]  N. Ferguson,et al.  Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. , 1998, Science.

[23]  Michael Travisano,et al.  Adaptive radiation in a heterogeneous environment , 1998, Nature.

[24]  F. Taddei,et al.  Highly variable mutation rates in commensal and pathogenic Escherichia coli. , 1997, Science.

[25]  R. Arbeit,et al.  Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field electrophoresis to molecular epidemiology. , 1990, The Journal of infectious diseases.

[26]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[27]  W. L. Payne,et al.  High Mutation Frequencies Among Escherichia coli and Salmonella Pathogens , 1996, Science.

[28]  C. Wills,et al.  Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. Charlesworth,et al.  Why sex and recombination? , 1998, Science.

[30]  J. Maslow,et al.  Epidemiologic Typing Systems , 1996, Infection Control & Hospital Epidemiology.

[31]  M. Nowak,et al.  Adaptive evolution of highly mutable loci in pathogenic bacteria , 1994, Current Biology.

[32]  R. Hendrix,et al.  Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Mazel,et al.  A distinctive class of integron in the Vibrio cholerae genome. , 1998, Science.

[34]  B. Swaminathan,et al.  Computerized Analysis of Restriction Fragment Length Polymorphism Patterns: Comparative Evaluation of Two Commercial Software Packages , 1998, Journal of Clinical Microbiology.

[35]  A. F. Bennett,et al.  Experimental tests of the roles of adaptation, chance, and history in evolution. , 1995, Science.

[36]  A. van Belkum,et al.  Variable numbers of tandem repeat loci in genetically homogeneous Haemophilus influenzae strains alter during persistent colonisation of cystic fibrosis patients. , 1999, FEMS Microbiology Letters.

[37]  James L. Winkler,et al.  Accessing Genetic Information with High-Density DNA Arrays , 1996, Science.

[38]  M. Tibayrenc Toward an integrated genetic epidemiology of parasitic protozoa and other pathogens. , 1999, Annual review of genetics.

[39]  Richard E. Lenski,et al.  Long-Term Experimental Evolution in Escherichia coli. II. Changes in Life-History Traits During Adaptation to a Seasonal Environment , 1994, The American Naturalist.

[40]  Jeffrey H. Miller,et al.  Direct Selection for Mutators inEscherichia coli , 1999, Journal of bacteriology.

[41]  I. Herskowitz,et al.  Defective prophage in Escherichia coli K12 strains. , 1975, Virology.

[42]  B. Levin,et al.  Population biology, evolution, and infectious disease: convergence and synthesis. , 1999, Science.

[43]  L. Metherell,et al.  Predictive Fluorescent Amplified-Fragment Length Polymorphism Analysis of Escherichia coli: High-Resolution Typing Method with Phylogenetic Significance , 1999, Journal of Clinical Microbiology.

[44]  J. Musser,et al.  Clonal analysis of methicillin-resistant Staphylococcus aureus strains from intercontinental sources: association of the mec gene with divergent phylogenetic lineages implies dissemination by horizontal transfer and recombination , 1992, Journal of clinical microbiology.

[45]  R. Milkman Electrophoretic Variation in Escherichia coli from Natural Sources , 1973, Science.

[46]  J. Saunders Population Genetics of bacteria. , 1994 .

[47]  Willem,et al.  Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains , 1995, Journal of clinical microbiology.

[48]  J. Louarn,et al.  Analysis and possible role of hyperrecombination in the termination region of the Escherichia coli chromosome , 1991, Journal of bacteriology.

[49]  M Weizenegger,et al.  Bacterial phylogeny based on comparative sequence analysis (review) , 1998, Electrophoresis.

[50]  D. Hartl,et al.  Genetic exchange among natural isolates of bacteria: recombination within the phoA gene of Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Nicole,et al.  Molecular Diversity and Evolutionary Relationships of Tn1546-Like Elements in Enterococci from Humans and Animals , 1999, Antimicrobial Agents and Chemotherapy.

[52]  P. A. Murphy,et al.  Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Lenski,et al.  Long-term experimental evolution in , 1997 .

[54]  C. Smyth,et al.  Helicobacter pylori--a conundrum of genetic diversity. , 1998, Microbiology.

[55]  B. Wood,et al.  The human genus. , 1999, Science.

[56]  J. Drake A constant rate of spontaneous mutation in DNA-based microbes. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[57]  F. Neidhardt,et al.  Linkage Map of Escherichia coli K-12 , 1987 .

[58]  Lawrence G. Wayne,et al.  International Committee on Systematic Bacteriology: Announcement of the Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics , 1988 .

[59]  J. Weinberg,et al.  A European Centre for Infectious Disease? , 1998, The Lancet.

[60]  M. Tibayrenc Population genetics of parasitic protozoa and other microorganisms. , 1995, Advances in parasitology.

[61]  D. Guttman,et al.  Recombination and clonality in natural populations of Escherichia coli. , 1997, Trends in ecology & evolution.

[62]  A. van Belkum,et al.  Multicenter Evaluation of Epidemiological Typing of Methicillin-Resistant Staphylococcus aureus Strains by Repetitive-Element PCR Analysis , 2000, Journal of Clinical Microbiology.

[63]  M. Chandler,et al.  Insertion Sequences , 1998, Microbiology and Molecular Biology Reviews.

[64]  J. Drake,et al.  Rates of spontaneous mutation. , 1998, Genetics.

[65]  R. Vasilov,et al.  Prediction of the antimicrobial effects of trovafloxacin and ciprofloxacin on staphylococci using an in-vitro dynamic model. , 1999, The Journal of antimicrobial chemotherapy.

[66]  R. Kolter,et al.  Evolution of microbial diversity during prolonged starvation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[67]  D van Soolingen,et al.  Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology , 1997, Journal of clinical microbiology.

[68]  H. Muller THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. , 1964, Mutation research.

[69]  R. Lenski,et al.  LONG‐TERM EXPERIMENTAL EVOLUTION IN ESCHERICHIA COLI. III. VARIATION AMONG REPLICATE POPULATIONS IN CORRELATED RESPONSES TO NOVEL ENVIRONMENTS , 1995, Evolution; international journal of organic evolution.

[70]  R. Lenski,et al.  New data on excisions of Mu from E. coli MCS2 cast doubt on directed mutation hypothesis , 1990, Nature.

[71]  B. Tümmler,et al.  Large chromosomal inversions occur in Pseudomonas aeruginosa clone C strains isolated from cystic fibrosis patients. , 2006, FEMS microbiology letters.

[72]  Yan P. Yuan,et al.  Predicting function: from genes to genomes and back. , 1998, Journal of molecular biology.

[73]  T. Whittam,et al.  Mutators and long-term molecular evolution of pathogenic Escherichia coli O157:H7. , 1998, Emerging infectious diseases.

[74]  R. Lenski,et al.  The directed mutation controversy and neo-Darwinism. , 1993, Science.

[75]  J. T. Crawford,et al.  Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology , 1993, Journal of clinical microbiology.

[76]  E. Power RAPD typing in microbiology--a technical review. , 1996, The Journal of hospital infection.

[77]  L. Reller,et al.  Assessment of similarity among coagulase-negative staphylococci from sequential blood cultures of neonates and children by pulsed-field gel electrophoresis. , 1996, The Journal of infectious diseases.

[78]  R. H.J.MULLE THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE , 2002 .

[79]  P. Hunter Reproducibility and indices of discriminatory power of microbial typing methods , 1990, Journal of clinical microbiology.

[80]  J. Miller,et al.  Proliferation of mutators in A cell population , 1997, Journal of bacteriology.

[81]  M. Radman,et al.  The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants , 1989, Nature.

[82]  Gianluigi Cardinali,et al.  Critical Observations on Computerized Analysis of Banding Patterns with Commercial Software Packages , 1999, Journal of Clinical Microbiology.

[83]  F. Wu,et al.  Regulation of replication of an iteron-containing DNA molecule. , 1994, Progress in nucleic acid research and molecular biology.

[84]  W. Fitch,et al.  Dynamics of IS-related genetic rearrangements in resting Escherichia coli K-12. , 1995, Molecular biology and evolution.

[85]  P. de Vos,et al.  Polyphasic Taxonomy , a Consensus Approach to Bacterial Systematics , 1996 .

[86]  L. Chao,et al.  COMPETITION BETWEEN HIGH AND LOW MUTATING STRAINS OF ESCHERICHIA COLI , 1983, Evolution; international journal of organic evolution.

[87]  R. Holmes,et al.  Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. , 1984, Science.

[88]  H V Westerhoff,et al.  Structure and partitioning of bacterial DNA: determined by a balance of compaction and expansion forces? , 1995, FEMS microbiology letters.

[89]  R. Arbeit,et al.  Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. , 1993, Science.

[90]  P. Stewart,et al.  Methicillin-sensitive and -resistant homologues of Staphylococcus aureus occur together among clinical isolates. , 1993, The Journal of infectious diseases.

[91]  T. Kogoma Recombination by Replication , 1996, Cell.

[92]  M. Kaufmann,et al.  Assessment of Resolution and Intercenter Reproducibility of Results of Genotyping Staphylococcus aureus by Pulsed-Field Gel Electrophoresis of SmaI Macrorestriction Fragments: a Multicenter Study , 1998, Journal of Clinical Microbiology.

[93]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[94]  A. van Belkum,et al.  Molecular Diversity and Evolutionary Relationships of Tn1546-Like Elements in Enterococci from Humans and Animals , 1999, Antimicrobial Agents and Chemotherapy.

[95]  A. Stoltzfus,et al.  Molecular evolution of the Escherichia coli chromosome. I. Analysis of structure and natural variation in a previously uncharacterized region between trp and tonB. , 1988, Genetics.

[96]  B. Tümmler,et al.  Large chromosomal inversions occur in clone C strains isolated from cystic fibrosis patients , 1997 .

[97]  F. Taddei,et al.  Role of mutator alleles in adaptive evolution , 1997, Nature.

[98]  H. Ochman,et al.  Chromosomal Changes during Experimental Evolution in Laboratory Populations of Escherichia coli , 1999, Journal of bacteriology.

[99]  C. Bloch,et al.  Type-Specific Contributions to Chromosome Size Differences in Escherichia coli , 1999, Infection and Immunity.

[100]  M. Tibayrenc European centre for infectious disease , 1999, The Lancet.

[101]  M. Kimura The Neutral Theory of Molecular Evolution: Introduction , 1983 .

[102]  T. Whittam,et al.  Multilocus genetic structure in natural populations of Escherichia coli. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Willem,et al.  On the nature and use of randomly amplified DNA from Staphylococcus aureus , 1996, Journal of clinical microbiology.

[104]  R. S. Harris,et al.  Transient and heritable mutators in adaptive evolution in the lab and in nature. , 1998, Genetics.

[105]  M. Struelens Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. , 1996, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[106]  L. Castilla,et al.  Genetic changes accompanying increased fitness in evolving populations of Escherichia coli. , 1992, Genetics.

[107]  K. Hiramatsu Molecular Evolution of MRSA , 1995, Microbiology and immunology.

[108]  Howard Ochman,et al.  Pathogenicity Islands: Bacterial Evolution in Quantum Leaps , 1996, Cell.

[109]  J. Lake,et al.  Horizontal gene transfer among genomes: the complexity hypothesis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[110]  W Arber,et al.  Genomic evolution during a 10,000-generation experiment with bacteria. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  B. Rannala,et al.  Phylogenetic methods come of age: testing hypotheses in an evolutionary context. , 1997, Science.

[112]  R. Lenski,et al.  Punctuated Evolution Caused by Selection of Rare Beneficial Mutations , 1996, Science.

[113]  F. Rodríguez-Valera,et al.  Accessory DNA in the Genomes of Representatives of the Escherichia coli Reference Collection , 1999, Journal of bacteriology.

[114]  K. Hiramatsu,et al.  Distribution of mec regulator genes in methicillin-resistant Staphylococcus clinical strains , 1993, Antimicrobial Agents and Chemotherapy.

[115]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[116]  R. Lenski,et al.  Evolution of high mutation rates in experimental populations of E. coli , 1997, Nature.

[117]  K. Novak The complete genome sequence… , 1998, Nature Medicine.

[118]  T. Sainsbury,et al.  Parapoxvirus infection in red squirrels. , 1996, The Veterinary record.

[119]  J. Trevors Bacterial population genetics , 1997 .

[120]  B. Levin,et al.  Genetic diversity and structure in Escherichia coli populations. , 1980, Science.

[121]  A. Abeles,et al.  The iteron bases and spacers of the P1 replication origin contain information that specifies the formation of a complex structure involved in initiation , 1997, Molecular microbiology.

[122]  H. P. Treffers,et al.  A Factor (or Mutator Gene) Influencing Mutation Rates in Escherichia Coli. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[123]  R M Hall,et al.  Gene cassettes: a new class of mobile element. , 1995, Microbiology.

[124]  G. Bell,et al.  Experimental evolution in Chlamydomonas. I. Short-term selection in uniform and diverse environments , 1997, Heredity.

[125]  J. Overbaugh,et al.  The origin of mutants , 1988, Nature.

[126]  J. Hacker,et al.  A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256 , 1999, Molecular microbiology.

[127]  M. Tibayrenc Genetic epidemiology of parasitic protozoa and other infectious agents: the need for an integrated approach. , 1998, International journal for parasitology.

[128]  J. Adams,et al.  Repeated evolution of an acetate-crossfeeding polymorphism in long-term populations of Escherichia coli. , 1998, Molecular biology and evolution.

[129]  T. Cheasty,et al.  Vero cytotoxin-producing Escherichia coli O157 outbreaks in England and Wales, 1995: phenotypic methods and genotypic subtyping. , 1997, Emerging infectious diseases.

[130]  R. Lenski,et al.  Evolutionary Genetics: Directed mutations slip-sliding away? , 1995, Current Biology.

[131]  J. Miller,et al.  Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus , 1994, Journal of clinical microbiology.

[132]  J. Kalinoski,et al.  The view from here. , 1991, The Journal of the Association of Nurses in AIDS Care : JANAC.

[133]  P. E. Gibbs,et al.  The Molecular Clock Runs at Different Rates Among Closely Related Members of a Gene Family , 1998, Journal of Molecular Evolution.

[134]  A. van Belkum,et al.  Genetic diversification of methicillin-resistant Staphylococcus aureus as a function of prolonged geographic dissemination and as measured by binary typing and other genotyping methods. , 1998, Research in microbiology.

[135]  M. Berlyn Linkage Map of Escherichia coli K-12, Edition 10: The Traditional Map , 1998, Microbiology and Molecular Biology Reviews.

[136]  Harry B. McGee,et al.  Hemorrhagic colitis associated with a rare Escherichia coli serotype , 1983 .

[137]  D. Thaler,et al.  Microbial genetics: The tinkerer's evolving tool-box , 1997, Nature.

[138]  R. Holmes,et al.  Cloning of Shiga-like toxin structural genes from a toxin converting phage of Escherichia coli. , 1985, Science.

[139]  T. Whittam,et al.  Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics , 1986, Applied and environmental microbiology.

[140]  D. Dykhuizen,et al.  Recombination in Escherichia coli and the definition of biological species , 1991, Journal of bacteriology.

[141]  R. Arbeit,et al.  Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. , 1993, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.