Semidefinite Approximations of Conical Hulls of Measured Sets

Let C be a proper convex cone generated by a compact set which supports a measure $$\mu $$μ. A construction due to Barvinok, Veomett and Lasserre produces, using $$\mu $$μ, a sequence $$(P_k)_{k\in \mathbb {N}}$$(Pk)k∈N of nested spectrahedral cones which contains the cone $$C^*$$C∗ dual to C. We prove convergence results for such sequences of spectrahedra and provide tools for bounding the distance between $$P_k$$Pk and $$C^*$$C∗. These tools are especially useful on cones with enough symmetries and allow us to determine bounds for several cones of interest. We compute bounds for semidefinite approximations of cones over traveling salesman polytopes, cones of nonnegative ternary sextics and quaternary quartics and cones non-negative functions on finite abelian groups.

[1]  Grigoriy Blekherman,et al.  Nonnegative Polynomials and Sums of Squares , 2010, 1010.3465.

[2]  Pablo A. Parrilo,et al.  Sparse sum-of-squares certificates on finite abelian groups , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[3]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[4]  Rekha R. Thomas,et al.  Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..

[5]  P. K. Suetin,et al.  Linear Algebra and Geometry , 1989 .

[6]  S. Axler,et al.  Harmonic Function Theory , 1992 .

[7]  Gerald B. Folland,et al.  How to Integrate A Polynomial Over A Sphere , 2001, Am. Math. Mon..

[8]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[9]  Rekha R. Thomas,et al.  Convex Hulls of Algebraic Sets , 2010, 1007.1191.

[10]  Grigoriy Blekherman Convexity Properties of the Cone of Nonnegative Polynomials , 2004, Discret. Comput. Geom..

[11]  Mauricio Velasco,et al.  Linearization Functors on Real Convex Sets , 2012, SIAM J. Optim..

[12]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[13]  A. Haar Der Massbegriff in der Theorie der Kontinuierlichen Gruppen , 1933 .

[14]  P. Gruber Aspects of Approximation of Convex Bodies , 1993 .

[15]  Jean Dieudonne,et al.  Linear algebra and geometry , 1969 .

[16]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[17]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[18]  Peter Bro Miltersen,et al.  Strategy Iteration Is Strongly Polynomial for 2-Player Turn-Based Stochastic Games with a Constant Discount Factor , 2010, JACM.

[19]  A. Barvinok,et al.  THE COMPUTATIONAL COMPLEXITY OF CONVEX BODIES , 2006, math/0610325.

[20]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[21]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[22]  Peter J. C. Dickinson,et al.  On the computational complexity of membership problems for the completely positive cone and its dual , 2014, Comput. Optim. Appl..

[23]  Monique Laurent,et al.  Semidefinite representations for finite varieties , 2007, Math. Program..

[24]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[25]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[26]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[27]  Jean B. Lasserre,et al.  A New Look at Nonnegativity on Closed Sets and Polynomial Optimization , 2010, SIAM J. Optim..

[28]  Ellen Veomett A Positive Semidefinite Approximation of the Symmetric Traveling Salesman Polytope , 2007, Discret. Comput. Geom..

[29]  Louis J. Billera,et al.  All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..