Nanotechnology-enabled flexible and biocompatible energy harvesting

The development of a method for efficiently harvesting energy from the human body could enable extraordinary advances in biomedical devices and portable electronics. Being electromechanically coupled, nanopiezoelectrics represent a promising new materials paradigm for scavenging otherwise wasted energy, with the ultimate goal of replacing or augmenting batteries. Of particular interest is developing biomechanical energy nanogenerators that are highly efficient, but with flexible form factors for wearable or implantable applications. This perspective presents an overview of the opportunities, progresses, and challenges in the rapidly accelerating field of nanopiezoelectrics. The combination of new nanomaterial properties, novel assembly strategies, and breakthrough device performance metrics suggests a rich platform for a host of exciting avenues in fundamental research and novel applications.

[1]  Andrew M. Rappe,et al.  Application of a new virtual crystal approach for the study of disordered perovskites , 2000 .

[2]  Seth R. Sanders,et al.  Fundamental limits on energy transfer and circuit considerations for piezoelectric transformers , 1998 .

[3]  C. K. Lee,et al.  Piezoelectric strain rate gages , 1991 .

[4]  B. Satish,et al.  Piezoelectric properties of ferroelectric PZT-polymer composites , 2001 .

[5]  Joseph R. Burns,et al.  The Energy Harvesting Eel: a small subsurface ocean/river power generator , 2001 .

[6]  Z. Bi,et al.  Characterization of PZT Ferroelectric Thin Films by RF-magnetron Sputtering , 2007 .

[7]  John A Rogers,et al.  A printable form of single-crystalline gallium nitride for flexible optoelectronic systems. , 2005, Small.

[8]  Ilhan A. Aksay,et al.  Submicrometer-Scale Patterning of Ceramic Thin Films , 2004 .

[9]  P. Muralt,et al.  PZT thin films for microsensors and actuators: Where do we stand? , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  Thad Starner,et al.  Human-Powered Wearable Computing , 1996, IBM Syst. J..

[11]  D. Polla,et al.  PROCESSING AND CHARACTERIZATION OF PIEZOELECTRIC MATERIALS AND INTEGRATION INTO MICROELECTROMECHANICAL SYSTEMS , 1998 .

[12]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[13]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[14]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[15]  T. Furukawa,et al.  Electrostriction as the Origin of Piezoelectricity in Ferroelectric Polymers , 1990 .

[16]  Philippe Benabes,et al.  A digital piezoelectric accelerometer with sigma-delta servo technique , 1997 .

[17]  Yantao Shen,et al.  Integrated sensing for ionic polymer–metal composite actuators using PVDF thin films , 2007 .

[18]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[19]  A. Holmes-Siedle,et al.  PVdF: An electronically-active polymer for industry , 1983 .

[20]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[21]  Eiichi Fukada,et al.  Piezoelectric Effects in Collagen , 1964 .

[22]  Yoshihiro Tomita,et al.  Preparation of epitaxial Pb(ZrxTi1−x)O3 thin films and their crystallographic, pyroelectric, and ferroelectric properties , 1989 .

[23]  Sang-Gook Kim,et al.  MEMS power generator with transverse mode thin film PZT , 2005 .

[24]  J. A. Hoffer,et al.  Biomechanical Energy Harvesting: Generating Electricity During Walking with Minimal User Effort , 2008, Science.

[25]  Sang-Kook Han,et al.  Multifunctional transducer using poly (vinylidene fluoride) active layerand highly conducting poly (3,4-ethylenedioxythiophene) electrode: Actuator and generator , 2004 .

[26]  John A. Rogers,et al.  Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates , 2005 .

[27]  Paul Calvert,et al.  Piezoelectric polyvinylidene fluoride , 1975, Nature.

[28]  G T Davis Piezoelectric Polymer Transducers , 1987, Advances in dental research.

[29]  J. Baborowski Microfabrication of Piezoelectric MEMS , 2004 .

[30]  Eric Cross,et al.  Materials science: Lead-free at last , 2004, nature.

[31]  S. Farritor,et al.  On low-frequency electric power generation with PZT ceramics , 2005, IEEE/ASME Transactions on Mechatronics.

[32]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[33]  Michael J. Ramsay,et al.  Piezoelectric energy harvesting for bio-MEMS applications , 2001 .

[34]  P. Gardonio,et al.  Matched piezoelectric double sensor/actuator pairs for beam motion control , 2003 .

[35]  Zhong Lin Wang,et al.  Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope , 2004 .

[36]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[37]  Sergei V. Kalinin,et al.  Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces , 2002 .

[38]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[39]  K. A. Cook-Chennault,et al.  Piezoelectric Energy Harvesting , 2008 .

[40]  D. Inman,et al.  A Review of Power Harvesting from Vibration using Piezoelectric Materials , 2004 .

[41]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[42]  Elias Siores,et al.  A piezoelectric fibre composite based energy harvesting device for potential wearable applications , 2008 .

[43]  Ilya Grinberg,et al.  Relationship between local structure and phase transitions of a disordered solid solution , 2002, Nature.

[44]  Robert E. Newnham,et al.  Continuous poling of PZT fibers and ribbons and its application to new devices , 1983 .

[45]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[46]  G. Harbauer,et al.  Implantable physiological power supply with PVDF film , 1984 .

[47]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[48]  John A. Rogers,et al.  Bendable single crystal silicon thin film transistors formed by printing on plastic substrates , 2005 .

[49]  J. A. de Saja,et al.  Tailoring the structural properties of PVDF and P(VDF-TrFE) by using natural polymers as additives , 2009 .

[50]  Daniel J. Inman,et al.  An experimental comparison between several active composite actuators for power generation , 2006 .

[51]  Joseph A. Paradiso,et al.  Energy scavenging for mobile and wireless electronics , 2005, IEEE Pervasive Computing.

[52]  Alex Elvin,et al.  A self-powered mechanical strain energy sensor , 2001 .

[53]  S. Quake,et al.  Monolithic microfabricated valves and pumps by multilayer soft lithography. , 2000, Science.

[54]  Taeseung D. Yoo,et al.  Generating Electricity While Walking with Loads , 2022 .

[55]  Guang Zhu,et al.  Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. , 2009, Nano letters.

[56]  B. Jimenez,et al.  Influence of calcium on the ferroelectricity of modified lead titanate ceramics , 1989 .

[57]  Kyungsuk Yum,et al.  Voltage generation from individual BaTiO(3) nanowires under periodic tensile mechanical load. , 2007, Nano letters.

[58]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[59]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[60]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[61]  Michael C. McAlpine,et al.  Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. , 2007, Nature materials.

[62]  S. Bauer,et al.  Flexible active-matrix cells with selectively poled bifunctional polymer-ceramic nanocomposite for pressure and temperature sensing skin , 2009 .

[63]  Li-Wei Tu,et al.  Generation of electricity in GaN nanorods induced by piezoelectric effect , 2007 .

[64]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[65]  Yong Ding,et al.  Piezoelectric nanogenerator using CdS nanowires , 2008 .

[66]  Christopher R. Bowen,et al.  Modeling and measurement of piezoelectric fibers and interdigitaded electrodes for the optimization of piezofibre composites , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[67]  Tatsuya Shimoda,et al.  Polysilicon TFT on plastics , 2001, IS&T/SPIE Electronic Imaging.

[68]  Christopher R. Bowen,et al.  Characterisation and properties of fine scale PZT fibres , 2005 .