Surface tension defects in microfluidic self-alignment

Self-alignment in the fluidic phase is an alternative technique to conventional pick-and-place assembly, providing cost-effective, precise assembly of millions of microparts. For accurate alignment, the control of unwanted surface defects lowering alignment precision. Local minima are investigated and the modulation of the energy curve is simulated. Furthermore, hytsteresis effects are studied. The simulation results allow predictions for the modeling of the fluidic surface tension driven self alignment and thus provide conditions for the robustness of the fabrication process.