Estimated generalized dimensions of river networks

Abstract This work concerns a numerical estimation of the generalised fractal dimension of six river networks in Southern Italy, extracted from digitised maps on a 1:25,000 scale. The estimation is carried out through the method introduced by Pawelzik and Schuster, based on an extension of the correlation integral by Grassberger and Procaccia. We analysed the spectra of the generalised dimensions D q and the multi-fractal spectra f (α). The results are in agreement with the ones previously obtained through the use of standard box-counting techniques: they indicate that the investigated river networks are multi-fractal structures, with support dimensions ranging between 1.7 and 1.9, and appear not to be plane-filling sets. In the case of the Corace river, the multi-fractal spectrum of the whole river network approaches the envelope of the spectra of substructures corresponding to different hortonian stream orders.

[1]  Benoit B. Mandelbrot,et al.  Fractals: Form, Chance and Dimension , 1978 .

[2]  Cote,et al.  Box-counting multifractal analysis. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[3]  Meisel,et al.  Multifractal analysis of imprecise data: Badii-Politi and correlation integral approaches. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  C. Beck,et al.  Thermodynamics of chaotic systems : an introduction , 1993 .

[5]  A. Rinaldo,et al.  Fractal River Basins: Chance and Self-Organization , 1997 .

[6]  Schuster,et al.  Generalized dimensions and entropies from a measured time series. , 1987, Physical review. A, General physics.

[7]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[8]  R. Pastor-Satorras,et al.  LETTER TO THE EDITOR: Numerical estimates of the generalized dimensions of the Hénon attractor for negative q , 1996 .

[9]  L. Liebovitch,et al.  A fast algorithm to determine fractal dimensions by box counting , 1989 .

[10]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[11]  Herbert F Jelinek,et al.  Neurons and fractals: how reliable and useful are calculations of fractal dimensions? , 1998, Journal of Neuroscience Methods.

[12]  I. Rodríguez‐Iturbe,et al.  The fractal nature of river networks , 1988 .

[13]  R. Horton Drainage‐basin characteristics , 1932 .

[14]  Gabriel B. Mindlin,et al.  An efficient algorithm for fast O(N*ln(N)) box counting , 1990 .

[15]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[16]  R. Jensen,et al.  Direct determination of the f(α) singularity spectrum , 1989 .

[17]  E Louis,et al.  Are neurons multifractals? , 1999, Journal of Neuroscience Methods.

[18]  Praveen Kumar,et al.  On the use of digital elevation model data for Hortonian and fractal analyses of channel networks , 1993 .

[19]  A. Aharony Measuring multifractals , 1989 .

[20]  Benoit B. Mandelbrot,et al.  Multifractal Power Law Distributions: Negative and Critical Dimensions and Other “Anomalies,” Explained by a Simple Example , 2003 .

[21]  Theiler,et al.  Efficient algorithm for estimating the correlation dimension from a set of discrete points. , 1987, Physical review. A, General physics.

[22]  Alessandro Marani,et al.  Minimum energy and fractal structures of drainage networks , 1992 .

[23]  A. N. Strahler Hypsometric (area-altitude) analysis of erosional topography. , 1952 .

[24]  Jensen,et al.  Erratum: Fractal measures and their singularities: The characterization of strange sets , 1986, Physical review. A, General physics.

[25]  R. Horton EROSIONAL DEVELOPMENT OF STREAMS AND THEIR DRAINAGE BASINS; HYDROPHYSICAL APPROACH TO QUANTITATIVE MORPHOLOGY , 1945 .

[26]  A. Rényi On a new axiomatic theory of probability , 1955 .

[27]  Bras,et al.  Multifractal analysis: Pitfalls of standard procedures and alternatives. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Vladimir Nikora,et al.  River network fractal geometry and its computer simulation , 1993 .

[29]  I. Rodríguez‐Iturbe,et al.  Comment on “On the fractal dimension of stream networks” by Paolo La Barbera and Renzo Rosso , 1990 .

[30]  A direct calculation of the spectrum of singularities f(α) of multifractals , 1995 .

[31]  Brian F. Feeny,et al.  Fast multifractal Analysis by Recursive Box Covering , 2000, Int. J. Bifurc. Chaos.

[32]  Paul Meakin,et al.  Fractals, scaling, and growth far from equilibrium , 1998 .

[33]  Ignacio Rodriguez-Iturbe,et al.  On the multifractal characterization of river basins , 1992 .

[34]  H. G. E. Hentschel,et al.  The infinite number of generalized dimensions of fractals and strange attractors , 1983 .

[35]  Pierluigi Claps,et al.  Reexamining the determination of the fractal dimension of river networks , 1996 .

[36]  Roberto Gaudio,et al.  Multifractal analysis of river networks: Sandbox approach , 2004 .

[37]  D. Montgomery,et al.  Are channel networks statistically self-similar? , 1997 .

[38]  R. Rosso,et al.  On the fractal dimension of stream networks , 1989 .

[39]  P. Grassberger Generalized dimensions of strange attractors , 1983 .

[40]  Rudolf Marcel Füchslin,et al.  An efficient algorithm to determine fractal dimensions of point sets , 2001 .

[41]  N. N. Oiwa,et al.  A moving-box algorithm to estimate generalized dimensions and the f (a) spectrum , 1998 .

[42]  A. Politi,et al.  Statistical description of chaotic attractors: The dimension function , 1985 .

[43]  H. Schellnhuber,et al.  Efficient box-counting determination of generalized fractal dimensions. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[44]  Molteno Fast O(N) box-counting algorithm for estimating dimensions. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  Roberto Gaudio,et al.  Multifractal behaviour of river networks , 2000 .

[46]  L. Sander,et al.  Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .

[47]  Benoit B. Mandelbrot,et al.  Negative fractal dimensions and multifractals , 1990 .