Exploring Cognitive States: Temporal Methods for Detecting and Characterizing Physiological Fingerprints

[1]  Lisa C. Thomas,et al.  Fatigue Detection in Commercial Flight Operations: Results Using Physiological Measures☆ , 2015 .

[2]  A. Pope,et al.  Biocybernetic system evaluates indices of operator engagement in automated task , 1995, Biological Psychology.

[3]  Andrew L. Kun,et al.  Estimating cognitive load using remote eye tracking in a driving simulator , 2010, ETRA.

[4]  Heung-Il Suk,et al.  Two-Layer Hidden Markov Models for Multi-class Motor Imagery Classification , 2010, 2010 First Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging.

[5]  F. Wilhelm,et al.  Emotions beyond the laboratory: Theoretical fundaments, study design, and analytic strategies for advanced ambulatory assessment , 2010, Biological Psychology.

[6]  J. Gross,et al.  Emotion elicitation using films , 1995 .

[7]  Robert Oostenveld,et al.  Estimating workload using EEG spectral power and ERPs in the n-back task , 2012, Journal of neural engineering.

[8]  Andrew J. Viterbi,et al.  Error bounds for convolutional codes and an asymptotically optimum decoding algorithm , 1967, IEEE Trans. Inf. Theory.

[9]  Glenn F. Wilson,et al.  Real-Time Assessment of Mental Workload Using Psychophysiological Measures and Artificial Neural Networks , 2003, Hum. Factors.

[10]  Stephen C. Adams,et al.  A survey of feature selection methods for Gaussian mixture models and hidden Markov models , 2019, Artificial Intelligence Review.

[11]  Stephen H. Fairclough,et al.  Capturing user engagement via psychophysiology: measures and mechanisms for biocybernetic adaptation , 2013, Int. J. Auton. Adapt. Commun. Syst..

[12]  Randall E. Bailey,et al.  Uncertainty in heart rate complexity metrics caused by R-peak perturbations , 2018, Comput. Biol. Medicine.

[13]  Jodi Forlizzi,et al.  Psycho-physiological measures for assessing cognitive load , 2010, UbiComp.

[14]  R. Parasuraman,et al.  A Taxonomic Analysis of Vigilance Performance , 1977 .

[15]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[16]  Ilpo Kojo,et al.  Using hidden Markov model to uncover processing states from eye movements in information search tasks , 2008, Cognitive Systems Research.

[17]  Stephen C. Adams,et al.  Feature Selection for Hidden Markov Models and Hidden Semi-Markov Models , 2016, IEEE Access.

[18]  Niels Wessel,et al.  Practical considerations of permutation entropy , 2013, The European Physical Journal Special Topics.

[19]  Robert Frysch,et al.  Hidden Markov model and support vector machine based decoding of finger movements using electrocorticography , 2013, Journal of neural engineering.

[20]  B. Pompe,et al.  Permutation entropy: a natural complexity measure for time series. , 2002, Physical review letters.

[21]  Byung-Jun Yoon,et al.  Hidden Markov Models and their Applications in Biological Sequence Analysis , 2009, Current genomics.

[22]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[23]  Stephen H. Fairclough,et al.  Construction of the biocybernetic loop: a case study , 2012, ICMI '12.

[24]  Michel Wedel,et al.  Global and local covert visual attention: Evidence from a bayesian hidden markov model , 2003 .

[25]  Gyanendra K. Verma,et al.  Multimodal fusion framework: A multiresolution approach for emotion classification and recognition from physiological signals , 2014, NeuroImage.

[26]  Chad L. Stephens,et al.  Autonomic specificity of basic emotions: Evidence from pattern classification and cluster analysis , 2010, Biological Psychology.

[27]  Dana Kulic,et al.  Estimating Robot Induced Affective State using Hidden Markov Models , 2006, ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication.