MINIMAL LEL-EQUIENERGETIC GRAPHS

Let G be a graph with n vertices and m edges. Let μ1 ,μ 2 ,...,μ n be the Laplacian eigenvalues of G . The Laplacian–energy–like graph invariant LEL(G )= " n=1 √ μi , has been recently defined and investigated by two of present authors [J. Liu, B. Liu, MATCH Commun. Math. Comput. Chem. 59 (2008) 355–372.]. Two non-isomorphic graphs G1 and G2 of the same order are said to be LEL-equienergetic if LEL(G1 )= LEL(G2) . In this paper we consider LEL-equienergetic and almost–LEL-equienergetic graphs and find that they occur relatively rarely. If the criterion for almost–LEL-equienergeticity is |LEL(G1) − LEL(G2)| < 10 −8 , then for n ≤ 14 there are no pairs of noncospectral LEL-equienergetic or almost–LEL-equienergetic trees, but there exist two almost–equienergetic pairs for n =1 5 .

[1]  D. Cvetkovic,et al.  Spectra of graphs : theory and application , 1995 .

[2]  Ivan Gutman,et al.  Topology and stability of conjugated hydrocarbons: The dependence of total π-electron energy on molecular topology , 2005 .

[3]  Andréa S. Bonifácio,et al.  Constructing pairs of equienergetic and non-cospectral graphs , 2008, Appl. Math. Lett..

[4]  Hongbo Hua,et al.  Bipartite Unicyclic Graphs with Large Energy , 2007 .

[5]  Yaoping Hou,et al.  EQUIENERGETIC BIPARTITE GRAPHS , 2007 .

[6]  Bolian Liu,et al.  A Laplacian-energy-like invariant of a graph , 2008 .

[7]  Luzhen Ye,et al.  On the minimal energy of trees with ag iven number of pendent vertices 1 , 2007 .

[8]  I. Gutman,et al.  EQUIENERGETIC AND ALMOST-EQUIENERGETIC TREES , 2009 .

[9]  Roberto Todeschini,et al.  New Spectral Indices for Molecule Description , 2008 .

[10]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[11]  I. Gutman,et al.  Laplacian energy of a graph , 2006 .

[12]  I. Gutman The Energy of a Graph: Old and New Results , 2001 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Bolian Liu,et al.  On a Pair of Equienergetic Graphs , 2008 .

[15]  I. Gutman Total ?-electron energy of benzenoid hydrohabons , 1983 .

[16]  Hongbo Hua,et al.  BIPARTITE UNICYCLIC GRAPHS WITH MAXIMAL, SECOND{MAXIMAL, AND THIRD{MAXIMAL ENERGY , 2007 .

[17]  Ivan Gutman,et al.  Spectra and energies of iterated line graphs of regular graphs , 2005, Appl. Math. Lett..

[18]  R. Balakrishnan The energy of a graph , 2004 .

[19]  Dragos Cvetkovic,et al.  A table of connected graphs on six vertices , 1984, Discret. Math..

[20]  Bo Zhou,et al.  ON SPECTRAL MOMENTS AND ENERGY OF GRAPHS , 2007 .

[21]  B. Devadas Acharya,et al.  EQUIENERGETIC GRAPHS , 2003 .

[22]  H. B. Walikar,et al.  EQUIENERGETIC COMPLEMENT GRAPHS , 2005 .

[23]  Yongtang Shi,et al.  Note on the energy of regular graphs , 2009 .

[24]  I. Gutman,et al.  Equienergetic chemical trees , 2004 .

[25]  José Antonio de la Peña,et al.  ON THE ENERGY OF REGULAR GRAPHS , .

[26]  ANOTHER CLASS OF EQUIENERGETIC GRAPHS , 2004 .