Parameterized Complexity in Cognitive Modeling: Foundations, Applications and Opportunities

In cognitive science, natural cognitive processes are generally conceptualized as computational processes: they serve to transform sensory and mental inputs into mental and action outputs. At the highest level of abstraction, computational models of cognitive processes aim at specifying the computational problem computed by the process under study. Because computational problems are realistic cognitive models only insofar as they can plausibly be computed by the human brain given its limited resources for computation, computational tractability provides a useful constraint on cognitive models. In this paper, we consider the particular benefits of the parameterized complexity framework for identifying sources of intractability in cognitive models. We review existing applications of the parameterized framework to this end in the domains of perception, action and higher cognition. We further identify important opportunities and challenges for future research. These include the development of new methods for complexity analyses specifically tailored to the reverse engineering perspective underlying cognitive science.

[1]  J. Reif Complexity of the Generalized Mover's Problem. , 1985 .

[2]  Peter A. van der Helm,et al.  Simplicity versus likelihood in visual perception: from surprisals to precisals. , 2000 .

[3]  J. Tenenbaum,et al.  Probabilistic models of cognition. Special Issue. , 2006 .

[4]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[5]  T. Griffiths,et al.  Special Issue : Probabilistic models of cognition Probabilistic inference in human semantic memory , 2006 .

[6]  Hudson Turner,et al.  Polynomial-Length Planning Spans the Polynomial Hierarchy , 2002, JELIA.

[7]  Ian Parberry,et al.  Circuit complexity and neural networks , 1994 .

[8]  U. Hoffrage,et al.  Fast, frugal, and fit: Simple heuristics for paired comparison , 2002 .

[9]  H. Simon,et al.  Rationality as Process and as Product of Thought , 1978 .

[10]  Eric Sven Ristad The language complexity game , 1993 .

[11]  John K. Tsotsos A ‘complexity level’ analysis of immediate vision , 2004, International Journal of Computer Vision.

[12]  K. Holyoak,et al.  The analogical mind. , 1997, The American psychologist.

[13]  Miriam Di Ianni,et al.  Parameterized Parallel Complexity , 1998, Euro-Par.

[14]  Willard Van Orman Quine,et al.  On empirically equivalent systems of the world , 1975 .

[15]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[16]  Robert L. Goldstone,et al.  Concepts and Categorization , 2003 .

[17]  P. A. Van Der Helm,et al.  The resurrection of simplicity in vision , 2007 .

[18]  E. Rosch,et al.  Family resemblances: Studies in the internal structure of categories , 1975, Cognitive Psychology.

[19]  H. Simon,et al.  Invariants of human behavior. , 1990, Annual review of psychology.

[20]  P. Thagard,et al.  Coherence in Thought and Action , 2000 .

[21]  Jean-Claude Latombe,et al.  Motion planning in the presence of moving obstacles , 1992 .

[22]  Eric Sven Ristad,et al.  Computational structure of human language , 1990 .

[23]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[24]  Nick Chater,et al.  A simplicity principle in unsupervised human categorization , 2002, Cogn. Sci..

[25]  Michael Schmitt,et al.  Simplicity and Robustness of Fast and Frugal Heuristics , 1999, Minds and Machines.

[26]  Harold T. Wareham The Role of Parameterized Computational Complexity Theory in Cognitive Modeling , 1996 .

[27]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[28]  Robert Cummins,et al.  ‘How does it Work?’ vs. ‘What are the Laws?’ , 2010 .

[29]  G Gigerenzer,et al.  Reasoning the fast and frugal way: models of bounded rationality. , 1996, Psychological review.

[30]  Michael R. Fellows,et al.  Parameterized complexity: A framework for systematically confronting computational intractability , 1997, Contemporary Trends in Discrete Mathematics.

[31]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[32]  Jeffrey D. Ullman,et al.  Formal languages and their relation to automata , 1969, Addison-Wesley series in computer science and information processing.

[33]  Keith Stenning,et al.  Reasoning theories and bounded rationality , 1993 .

[34]  Joshua B. Tenenbaum,et al.  The Role of Causal Models in Reasoning Under Uncertainty , 2003 .

[35]  N. Chater,et al.  Simplicity: a unifying principle in cognitive science? , 2003, Trends in Cognitive Sciences.

[36]  Leslie G. Valiant,et al.  Circuits of the mind , 1994 .

[37]  A. Treisman Perceptual grouping and attention in visual search for features and for objects. , 1982, Journal of experimental psychology. Human perception and performance.

[38]  Geoffrey Hunter What Computers Can't Do , 1988, Philosophy.

[39]  Tony Veale,et al.  Computability as a limiting cognitive constraint , 1999 .

[40]  Stuart M. Shieber,et al.  Foundational issues in natural language processing , 1991 .

[41]  Daniel C. Dennett,et al.  Cognitive science as reverse engineering several meanings of “Top-down” and “Bottom-up” , 1995 .

[42]  Peter Arnold van der Helm,et al.  Avoiding explosive search in automatic selection of simplest pattern codes , 1986, Pattern Recognit..

[43]  Peter A. van der Helm,et al.  Transparallel processing by hyperstrings. , 2004 .

[44]  Michael R. Fellows,et al.  Parameterized Circuit Complexity and the W Hierarchy , 1998, Theor. Comput. Sci..

[45]  H. Levesque Logic and the complexity of reasoning , 1988 .

[46]  Peter C. Fishburn,et al.  Binary interactions and subset choice , 1996 .

[47]  Ashraf M. Abdelbar,et al.  Approximating MAPs for Belief Networks is NP-Hard and Other Theorems , 1998, Artif. Intell..

[48]  John K. Tsotsos The Complexity of Perceptual Search Tasks , 1989, IJCAI.

[49]  Denis R. Hirschfeldt,et al.  Parameterized complexity: new developments and research frontiers , 2001 .

[50]  P. Kube Unbounded visual search is not both biologically plausible and NP - Complete , 1991, Behavioral and Brain Sciences.

[51]  J. Wolfe Moving towards solutions to some enduring controversies in visual search , 2003, Trends in Cognitive Sciences.

[52]  E. Rosch ON THE INTERNAL STRUCTURE OF PERCEPTUAL AND SEMANTIC CATEGORIES1 , 1973 .

[53]  Dan Roth,et al.  On the Hardness of Approximate Reasoning , 1993, IJCAI.

[54]  Marco Cesati,et al.  Parameterized complexity analysis in robot motion planning , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[55]  John McCarthy,et al.  What Computers Still Can't Do , 1996, Artif. Intell..

[56]  Deborah A. Joseph,et al.  On the complexity of reachability and motion planning questions (extended abstract) , 1985, SCG '85.

[57]  John K. Tsotsos Is complexity theory appropriate for analyzing biological systems? , 1991, Behavioral and Brain Sciences.

[58]  Robert C. Berwick,et al.  Computational complexity and natural language , 1987 .

[59]  N. Chater,et al.  Similarity as transformation , 2003, Cognition.

[60]  Iris van Rooij,et al.  Sources of complexity in subset choice , 2005 .

[61]  Kenneth Ward Church,et al.  Complexity, Two-Level Morphology and Finnish , 1988, COLING.

[62]  Henning Fernau,et al.  On the parameterized complexity of the generalized rush hour puzzle , 2003, CCCG.

[63]  Marcello Frixione,et al.  Tractable Competence , 2001, Minds and Machines.

[64]  Alexis Manaster Ramer Review of The language complexity game by Eric Sven Ristad. The MIT Press 1993. , 1995 .

[65]  Peter C. Fishburn,et al.  Subset preferences in linear and nonlinear utility theory , 1993 .

[66]  J. Tenenbaum,et al.  Optimal Predictions in Everyday Cognition , 2006, Psychological science.

[67]  Peter van Emde Boas,et al.  Machine Models and Simulation , 1990, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[68]  P M Todd,et al.  Précis of Simple heuristics that make us smart , 2000, Behavioral and Brain Sciences.

[69]  A. Tversky Features of Similarity , 1977 .

[70]  Tom Bylander,et al.  The Computational Complexity of Propositional STRIPS Planning , 1994, Artif. Intell..

[71]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[72]  N. Chater,et al.  Cateogry learning without labels— A simplicity approach , 2001 .

[73]  Wolfgang Faber,et al.  Planning under Incomplete Knowledge , 2000, Computational Logic.

[74]  Vladik Kreinovich,et al.  Computational Complexity of Planning and Approximate Planning in Presence of Incompleteness , 1999, IJCAI.

[75]  Lars Bergström,et al.  Underdetermination and realism , 1984 .

[76]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[77]  Martin Kay,et al.  Regular Models of Phonological Rule Systems , 1994, CL.

[78]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[79]  I. Rooij Tractable cognition : complexity theory in cognitive psychology , 2003 .

[80]  David Martin,et al.  Computational Molecular Biology: An Algorithmic Approach , 2001 .

[81]  P. Kube Complexity is complicated , 1990, Behavioral and Brain Sciences.

[82]  Michael R. Fellows,et al.  Systematic parameterized complexity analysis in computational phonology , 1999 .

[83]  Iris van Rooij,et al.  The Incoherence of Heuristically Explaining Coherence , 2006 .

[84]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[85]  John R. Anderson,et al.  The Adaptive Character of Thought , 1990 .

[86]  C. Q. Lee,et al.  The Computer Journal , 1958, Nature.

[87]  E. Leeuwenberg,et al.  Goodness of visual regularities: a nontransformational approach. , 1996, Psychological review.

[88]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[89]  Willem F. G. Haselager,et al.  Cognitive Science and Folk Psychology: The Right Frame of Mind , 1997 .

[90]  Nick Chater,et al.  Rationality In An Uncertain World: Essays In The Cognitive Science Of Human Understanding , 1998 .

[91]  Z. Pylyshyn Robot's Dilemma: The Frame Problem in Artificial Intelligence , 1987 .

[92]  Z. Pylyshyn,et al.  The Robot's Dilemma Revisited: The Frame Problem in Artificial Intelligence , 1996 .

[93]  P. Boas Machine models and simulations , 1991 .

[94]  John R. Anderson Arguments concerning representations for mental imagery. , 1978 .

[95]  Paul Thagard,et al.  Coherence as Constraint Satisfaction , 2019, Cogn. Sci..

[96]  Jason Eisner,et al.  Eecient Generation in Primitive Optimality Theory , 1997 .

[97]  Todd Wareham,et al.  The Parameterized Complexity of Intersection and Composition Operations on Sets of Finite-State Automata , 2000, CIAA.

[98]  Robert C. Berwick,et al.  Parsing Efficiency, Computational Complexity, and the Evaluation of Grammatical Theories , 2008 .