IRGS: Image Segmentation Using Edge Penalties and Region Growing

This paper proposes an image segmentation method named iterative region growing using semantics (IRGS), which is characterized by two aspects. First, it uses graduated increased edge penalty (GIEP) functions within the traditional Markov random field (MRF) context model in formulating the objective functions. Second, IRGS uses a region growing technique in searching for the solutions to these objective functions. The proposed IRGS is an improvement over traditional MRF based approaches in that the edge strength information is utilized and a more stable estimation of model parameters is achieved. Moreover, the IRGS method provides the possibility of building a hierarchical representation of the image content, and allows various region features and even domain knowledge to be incorporated in the segmentation process. The algorithm has been successfully tested on several artificial images and synthetic aperture radar (SAR) images.

[1]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Bin Yu,et al.  Model Selection and the Principle of Minimum Description Length , 2001 .

[3]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Miguel Á. Carreira-Perpiñán,et al.  Multiscale conditional random fields for image labeling , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[5]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[6]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[7]  Kenneth E. Barner,et al.  Joint region merging criteria for watershed-based image segmentation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[8]  Chee Sun Won,et al.  Unsupervised segmentation of noisy and textured images using Markov random fields , 1992, CVGIP Graph. Model. Image Process..

[9]  B. Yue,et al.  SAR Sea Ice Recognition Using Texture Methods , 2002 .

[10]  Anjan Sarkar,et al.  A simple unsupervised MRF model based image segmentation approach , 2000, IEEE Trans. Image Process..

[11]  Ramin Samadani,et al.  A finite mixtures algorithm for finding proportions in SAR images , 1995, IEEE Trans. Image Process..

[12]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Brendan McCane,et al.  Multi-scale adaptive segmentation using edge and region based attributes , 1997, Proceedings of 1st International Conference on Conventional and Knowledge Based Intelligent Electronic Systems. KES '97.

[14]  Harry Shum,et al.  Image segmentation by data driven Markov chain Monte Carlo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[15]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[16]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[17]  Adrian Barbu,et al.  Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[19]  Jerome A. Feldman,et al.  Decision Theory and Artificial Intelligence: I. A Semantics-Based Region Analyzer , 1974, Artif. Intell..

[20]  Rama Chellappa,et al.  Segmentation of polarimetric synthetic aperture radar data , 1992, IEEE Trans. Image Process..

[21]  David A. Clausi,et al.  Unsupervised image segmentation using a simple MRF model with a new implementation scheme , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[22]  Milan Sonka,et al.  Image Processing, Analysis and Machine Vision , 1993, Springer US.

[23]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[24]  Josiane Zerubia,et al.  A Hierarchical Markov Random Field Model and Multitemperature Annealing for Parallel Image Classification , 1996, CVGIP Graph. Model. Image Process..

[25]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[26]  David A. Clausi,et al.  Combining local and global features for image segmentation using iterative classification and region merging , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[27]  Ronald Chung,et al.  Polyhedral Object Localization in an Image by Referencing to a Single Model View , 2004, International Journal of Computer Vision.

[28]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Chang-Tsun Li,et al.  A Class of Discrete Multiresolution Random Fields and Its Application to Image Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  S.K. Alexander Image sampling by hierarchical annealing , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[32]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[33]  Vladimir Pavlovic,et al.  A graphical model framework for coupling MRFs and deformable models , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[34]  Josiane Zerubia,et al.  Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood , 1999, IEEE Trans. Image Process..

[35]  David A. Clausi,et al.  SAR Sea-Ice Image Analysis Based on Iterative Region Growing Using Semantics , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Marcel Worring,et al.  Watersnakes: Energy-Driven Watershed Segmentation , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Patrick Pérez,et al.  Discrete Markov image modeling and inference on the quadtree , 2000, IEEE Trans. Image Process..

[38]  Olga Veksler,et al.  Markov random fields with efficient approximations , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[39]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[40]  B. S. Manjunath,et al.  EdgeFlow: a technique for boundary detection and image segmentation , 2000, IEEE Trans. Image Process..

[41]  Philippe Andrey,et al.  Unsupervised Segmentation of Markov Random Field Modeled Textured Images Using Selectionist Relaxation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Paul W. Fieguth,et al.  Hierarchical Regions for Image Segmentation , 2004, ICIAR.

[43]  Aggelos K. Katsaggelos,et al.  Hybrid image segmentation using watersheds and fast region merging , 1998, IEEE Trans. Image Process..

[44]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[45]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[47]  John Chung-Mong Lee,et al.  Color image segmentation and parameter estimation in a markovian framework , 2001, Pattern Recognit. Lett..

[48]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..