A Fast and Sensitive Integrated Young Interferometer Biosensor

We have developed an ultrasensitive biosensor based on an integrated optical Young interferometer. Key features of this sensor are that it is very compact, extremely sensitive, label free, and very fast. Therefore the Young interferometer has significant potential to be developed into a handheld, point-of-care device. In this chapter we review the progress that has been made on the development of integrated Young interferometer sensors. The sensor developed in our lab is discussed in detail. We demonstrate various applications of the current sensor. Special attention is paid to the detection of viruses. Finally a discussion on future prospects of this sensor for diagnostics is given.

[1]  A. Gorbalenya,et al.  Topley and Wilson's Microbiology and Microbial Infections , 2005 .

[2]  Hongying Zhu,et al.  Opto-fluidic micro-ring resonator for sensitive label-free viral detection. , 2008, The Analyst.

[3]  Jan Greve,et al.  Surface Plasmon Resonance Multisensing , 1998 .

[4]  E. D. Cyan Handbook of Chemistry and Physics , 1970 .

[5]  Christopher J. Bardeen,et al.  Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles , 2007, Sensors and Actuators B: Chemical.

[6]  Rene Heideman,et al.  Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor , 1993 .

[7]  K. Chua,et al.  Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection. , 2007, Journal of virological methods.

[8]  Katrin Schmitt,et al.  Direct detection of tuberculosis infection in blood serum using three optical label-free approaches , 2008 .

[9]  John W. Mellors,et al.  Prognosis in HIV-1 Infection Predicted by the Quantity of Virus in Plasma , 1996, Science.

[10]  Laura M. Lechuga,et al.  The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology , 1997 .

[11]  Integrated optical difference interferometer as immunosensor , 1996 .

[12]  Paul Lambeck,et al.  Integrated opto-chemical sensors , 1992 .

[13]  F. Veer,et al.  Ellipsometry as a tool to study the adsorption behavior of synthetic and biopolymers at the air–water interface , 1978 .

[14]  M. Smyth,et al.  Oriented immobilization of antibodies and its applications in immunoassays and immunosensors. , 1996, The Analyst.

[15]  J. Cronin,et al.  The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation , 1992 .

[16]  A. Brandenburg,et al.  Interferometric sensor for detection of surface-bound bioreactions. , 2000, Applied optics.

[17]  A. Ymeti Development of a multichannel integrated young interferometer immunosensor , 2004 .

[18]  A. Brandenburg Differential refractometry by an integrated-optical Young interferometer , 1997 .

[19]  P Benech,et al.  New integrated-optics interferometer in planar technology. , 1994, Applied optics.

[20]  J. Andrade Surface and Interfacial Aspects of Biomedical Polymers , 1985 .

[21]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[22]  Amit K. Gupta,et al.  Single virus particle mass detection using microresonators with nanoscale thickness , 2004 .

[23]  Masamitsu Haruna,et al.  Nondestructive and simple method of optical-waveguide loss measurement with optimisation of end-fire coupling , 1992 .

[24]  Xudong Fan,et al.  Rapid chemical-vapor sensing using optofluidic ring resonators. , 2008, Optics letters.

[25]  W. Balch,et al.  Light scattering by viral suspensions , 2000 .

[26]  Matthew A. Cooper,et al.  Direct and sensitive detection of a human virus by rupture event scanning , 2001, Nature Biotechnology.

[27]  Aurel Ymeti,et al.  An ultrasensitive Young interferometer handheld sensor for rapid virus detection , 2007, Expert review of medical devices.

[28]  A. Haghighat,et al.  Performance of A 3 MCNP™ for Calculation of 3-D Neutron Flux Distribution in a BWR Core Shroud , 2001 .

[29]  G. Rozgonyi,et al.  Tapered Windows in SiO2: The Effect of NH 4 F : HF Dilution and Etching Temperature , 1977 .

[30]  O. Parriaux,et al.  Normalized analysis for the sensitivity optimization of integrated optical evanescent-wave sensors , 1998 .

[31]  J Greve,et al.  Sensor based on an integrated optical microcavity. , 2002, Optics letters.

[32]  Jan Greve,et al.  New detection method for atrazine pesticides with the optical waveguide Mach-Zehnder immunosensor , 1997 .

[33]  M. Goto,et al.  Optical immunosensing for IgG , 1993 .

[34]  Jan Greve,et al.  Vibrating mirror surface plasmon resonance immunosensor , 1991 .

[35]  Andreas Brecht,et al.  A direct optical immunosensor for atrazine detection , 1995 .

[36]  Stuart Brand,et al.  A new quantitative optical biosensor for protein characterisation. , 2003, Biosensors & bioelectronics.

[37]  S. J. Clark,et al.  High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. , 1993, Science.

[38]  R. Heideman,et al.  Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system , 1999 .

[39]  Yiping Zhao,et al.  Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate. , 2006, Nano letters.

[40]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. R. Wilson,et al.  Optoelectronics, an introduction , 1984 .

[42]  J Greve,et al.  Immunoreactivity of adsorbed anti human chorionic gonadotropin studied with an optical waveguide interferometric sensor. , 1994, Biosensors & bioelectronics.

[43]  B. Irvine,et al.  Rapid and precise quantification of HIV-1 RNA in plasma using a branched DNA signal amplification assay. , 1995, Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association.

[44]  Max Sussman,et al.  Topley and Wilson's Microbiology and Microbial infections , 1998 .

[45]  D. Suarez,et al.  Detection of avian influenza virus using an interferometric biosensor , 2007, Analytical and bioanalytical chemistry.

[46]  J. Greve,et al.  Fast, ultrasensitive virus detection using a Young interferometer sensor. , 2007, Nano letters.

[47]  Jongin Hong,et al.  A Mach-Zehnder interferometer based on silicon oxides for biosensor applications. , 2006, Analytica chimica acta.

[48]  Aurel Ymeti,et al.  Realization of a multichannel integrated Young interferometer chemical sensor. , 2003, Applied optics.

[49]  Graham H. Cross,et al.  YOUNG'S FRINGES FROM VERTICALLY INTEGRATED SLAB WAVEGUIDES : APPLICATIONS TO HUMIDITY SENSING , 1999 .

[50]  B. Lamontagne,et al.  Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. , 2008, Optics letters.

[51]  Aurel Ymeti,et al.  Development of a multichannel integrated interferometer immunosensor , 2002 .

[52]  Paul Lambeck,et al.  Fully integrated optical polarimeter , 2000 .

[53]  W. Lukosz,et al.  Integrated optical output grating coupler as biochemical sensor , 1994 .

[54]  J Greve,et al.  Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor. , 2004, Biosensors & bioelectronics.

[55]  S. Shanmukh,et al.  Identification and classification of respiratory syncytial virus (RSV) strains by surface-enhanced Raman spectroscopy and multivariate statistical techniques , 2008, Analytical and bioanalytical chemistry.