Mesostructured multifunctional nanoparticles for imaging and drug delivery

Mesostructured silica particles (∼100 nm diameter with ∼2 nm pores) prepared by surfactant-templated sol–gel techniques are versatile supports that can be easily derivatized with active molecules to create multifunctional materials. By deliberately placing active molecules in different regions of the mesostructure, fluorescent molecules, molecular machines, targeting ligands, and metal nanocrystals can be combined on a single particle. This review highlights the research in which multiple components are incorporated onto mesoporous silica for simultaneous imaging and delivery of molecules in biological applications.

[1]  Jinwoo Cheon,et al.  Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging , 2007, Nature Medicine.

[2]  Frank E. Osterloh,et al.  A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants , 2004 .

[3]  R. J. Lee,et al.  Targeted drug delivery via the folate receptor. , 2000, Advanced drug delivery reviews.

[4]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[5]  Brian J. Melde,et al.  Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age , 2000 .

[6]  Yingchun Zhu,et al.  Installing dynamic molecular photomechanics in mesopores: a multifunctional controlled-release nanosystem. , 2007, Angewandte Chemie.

[7]  Bradley F. Chmelka,et al.  Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures , 1998 .

[8]  Weihong Tan,et al.  Fluorescent nanoparticles for multiplexed bacteria monitoring. , 2007, Bioconjugate chemistry.

[9]  Ramón Martínez-Máñez,et al.  Toward the development of ionically controlled nanoscopic molecular gates. , 2004, Journal of the American Chemical Society.

[10]  Qiang Cai,et al.  Dilute solution routes to various controllable morphologies of MCM-41 silica with a basic medium , 2001 .

[11]  Larry A. Sklar,et al.  Control of Molecular Transport Through Stimuli‐Responsive Ordered Mesoporous Materials , 2003 .

[12]  Chung-Yuan Mou,et al.  Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers , 2005 .

[13]  V. S. Lin,et al.  Mesoporous silica nanoparticles deliver DNA and chemicals into plants. , 2007, Nature nanotechnology.

[14]  C. Brinker,et al.  Self-Assembly of Ordered, Robust, Three-Dimensional Gold Nanocrystal/Silica Arrays , 2004, Science.

[15]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[16]  Monty Liong,et al.  Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. , 2007, Small.

[17]  Chen Chang,et al.  Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous , 2006 .

[18]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[19]  Cari D. Pentecost,et al.  Construction of a pH-driven supramolecular nanovalve. , 2006, Organic letters.

[20]  Monty Liong,et al.  Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. , 2008, ACS nano.

[21]  Monty Liong,et al.  Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells , 2007, Nanobiotechnology : the journal at the intersection of nanotechnology, molecular biology, and biomedical sciences.

[22]  C. Ni,et al.  Antibacterial properties of silver-doped titania. , 2007, Small.

[23]  F. Xiao,et al.  pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery , 2005 .

[24]  Hsian-Rong Tseng,et al.  A reversible molecular valve. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Jung Ho Yu,et al.  Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[26]  Victor S-Y Lin,et al.  Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. , 2006, Journal of the American Chemical Society.

[27]  P. Minoofar,et al.  Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. , 2002, Journal of the American Chemical Society.

[28]  Chen Chang,et al.  High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multifunctional cell-imaging probe. , 2008, Small.

[29]  Weili Lin,et al.  Mesoporous silica nanospheres as highly efficient MRI contrast agents. , 2008, Journal of the American Chemical Society.

[30]  Ivan Gorelikov,et al.  Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. , 2008, Nano letters.

[31]  Jeffrey I. Zink,et al.  Versatile Supramolecular Nanovalves Reconfigured for Light Activation , 2007 .

[32]  T. Taguchi,et al.  Photo-Switched Storage and Release of Guest Molecules in the Pore Void of Coumarin-Modified MCM-41 , 2003 .

[33]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[34]  Wenru Zhao,et al.  Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. , 2005, Journal of the American Chemical Society.

[35]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. , 2007, Journal of the American Chemical Society.

[36]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[37]  Plamen Atanassov,et al.  Photoregulation of Mass Transport through a Photoresponsive Azobenzene-Modified Nanoporous Membrane , 2004 .

[38]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[39]  Jackie Y. Ying,et al.  SYNTHESIS AND APPLICATIONS OF SUPRAMOLECULAR-TEMPLATED MESOPOROUS MATERIALS , 1999 .

[40]  Yu-Chie Chen,et al.  Functional Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling agents for pathogenic bacteria. , 2008, Small.

[41]  Galen D. Stucky,et al.  MESOPOROUS SILICATE SEQUESTRATION AND RELEASE OF PROTEINS , 1999 .

[42]  J. F. Stoddart,et al.  Mesostructured Silica Supports for Functional Materials and Molecular Machines , 2007 .

[43]  J. F. Stoddart,et al.  pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. , 2008, Angewandte Chemie.

[44]  M. Vallet‐Regí,et al.  Revisiting silica based ordered mesoporous materials: medical applications , 2006 .

[45]  Hsian-Rong Tseng,et al.  An operational supramolecular nanovalve. , 2004, Journal of the American Chemical Society.

[46]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[47]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[48]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. , 2008, Advanced drug delivery reviews.

[49]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[50]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[51]  Jeffrey I Zink,et al.  Multiply doped nanostructured silicate sol-gel thin films: spatial segregation of dopants, energy transfer, and distance measurements. , 2005, Journal of the American Chemical Society.

[52]  C. Brinker,et al.  Ordered nanocrystal/silica particles self-assembled from nanocrystal micelles and silicate. , 2006, Chemical communications.

[53]  J. Zink,et al.  Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles , 2009 .

[54]  J. Fraser Stoddart,et al.  Supramolecular nanovalves controlled by proton abstraction and competitive binding , 2006 .

[55]  Chung-Yuan Mou,et al.  Multifunctional Mesoporous Silica Nanoparticles for Intracellular Labeling and Animal Magnetic Resonance Imaging Studies , 2008, Chembiochem : a European journal of chemical biology.

[56]  M. Vallet‐Regí,et al.  MCM-41 Organic Modification as Drug Delivery Rate Regulator , 2003 .

[57]  Jeffrey I. Zink,et al.  Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles , 2007 .

[58]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[59]  J. F. Stoddart,et al.  Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes. , 2007, Journal of the American Chemical Society.

[60]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.