Driving Opposing Behaviors with Ensembles of Piriform Neurons

[1]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[2]  T. Cutforth,et al.  Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons , 2011, Nature.

[3]  S. R. Datta,et al.  Distinct representations of olfactory information in different cortical centres , 2011, Nature.

[4]  Michael D. Ehlers,et al.  Neural Circuit Mechanisms for Pattern Detection and Feature Combination in Olfactory Cortex , 2011, Neuron.

[5]  Minmin Luo,et al.  Diverse Patterns of Odor Representation by Neurons in the Anterior Piriform Cortex of Awake Mice , 2010, The Journal of Neuroscience.

[6]  K. Deisseroth,et al.  Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures , 2010, Nature Protocols.

[7]  Dan D. Stettler,et al.  Representations of Odor in the Piriform Cortex , 2009, Neuron.

[8]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[9]  S S Moy,et al.  Social approach in genetically engineered mouse lines relevant to autism , 2009, Genes, brain, and behavior.

[10]  Gilles Laurent,et al.  Testing Odor Response Stereotypy in the Drosophila Mushroom Body , 2008, Neuron.

[11]  Anthony M Zador,et al.  Millisecond-scale differences in neural activity in auditory cortex can drive decisions , 2008, Nature Neuroscience.

[12]  M. Moser,et al.  Understanding memory through hippocampal remapping , 2008, Trends in Neurosciences.

[13]  S. Sternson,et al.  A FLEX Switch Targets Channelrhodopsin-2 to Multiple Cell Types for Imaging and Long-Range Circuit Mapping , 2008, The Journal of Neuroscience.

[14]  Minmin Luo,et al.  Precise Circuitry Links Bilaterally Symmetric Olfactory Maps , 2008, Neuron.

[15]  K. Svoboda,et al.  Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice , 2008, Nature.

[16]  S. Itohara,et al.  Innate versus learned odour processing in the mouse olfactory bulb , 2007, Nature.

[17]  Feng Zhang,et al.  An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology , 2007, Journal of neural engineering.

[18]  John H.R. Maunsell,et al.  Behavioral Detection of Electrical Microstimulation in Different Cortical Visual Areas , 2007, Current Biology.

[19]  Donald A Wilson,et al.  Spatial and Temporal Distribution of Odorant-Evoked Activity in the Piriform Cortex , 2007, The Journal of Neuroscience.

[20]  Y. Yoshihara,et al.  Odorant Receptor Map in the Mouse Olfactory Bulb: In Vivo Sensitivity and Specificity of Receptor-Defined Glomeruli , 2006, Neuron.

[21]  N. Onoda,et al.  Odor-concentration coding in the guinea-pig piriform cortex , 2005, Neuroscience.

[22]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[23]  W. Löscher,et al.  The central piriform cortex: anatomical connections and anticonvulsant effect of gaba elevation in the kindling model , 2004, Neuroscience.

[24]  W. Denk,et al.  Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Andreas T. Schaefer,et al.  Maintaining Accuracy at the Expense of Speed Stimulus Similarity Defines Odor Discrimination Time in Mice , 2004, Neuron.

[26]  J. Piven,et al.  Automated apparatus for quantitation of social approach behaviors in mice , 2004, Genes, brain, and behavior.

[27]  Stuart Firestein,et al.  A pharmacological profile of the aldehyde receptor repertoire in rat olfactory epithelium , 2004, The Journal of physiology.

[28]  L. Buck,et al.  The mouse olfactory receptor gene family , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  L. Haberly,et al.  Odor‐evoked activity is spatially distributed in piriform cortex , 2003, The Journal of comparative neurology.

[30]  S. Kügler,et al.  Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area , 2003, Gene Therapy.

[31]  Luis Puelles,et al.  Cortical Excitatory Neurons and Glia, But Not GABAergic Neurons, Are Produced in the Emx1-Expressing Lineage , 2002, The Journal of Neuroscience.

[32]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[33]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[34]  S. Firestein,et al.  The olfactory receptor gene superfamily of the mouse , 2002, Nature Neuroscience.

[35]  B. McNaughton,et al.  Independence of Firing Correlates of Anatomically Proximate Hippocampal Pyramidal Cells , 2001, The Journal of Neuroscience.

[36]  B. Slotnick,et al.  Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. , 1999, Chemical senses.

[37]  J. Miller,et al.  GFPcre fusion vectors with enhanced expression. , 1999, Analytical biochemistry.

[38]  L. Buck,et al.  Combinatorial Receptor Codes for Odors , 1999, Cell.

[39]  N Burgess,et al.  Place cells, navigational accuracy, and the human hippocampus. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  Richard Axel,et al.  Visualizing an Olfactory Sensory Map , 1996, Cell.

[41]  J. Ngai,et al.  General Anosmia Caused by a Targeted Disruption of the Mouse Olfactory Cyclic Nucleotide–Gated Cation Channel , 1996, Neuron.

[42]  Linda B. Buck,et al.  Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb , 1994, Cell.

[43]  Richard Axel,et al.  Topographic organization of sensory projections to the olfactory bulb , 1994, Cell.

[44]  Richard Axel,et al.  Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium , 1993, Cell.

[45]  Linda B. Buck,et al.  A zonal organization of odorant receptor gene expression in the olfactory epithelium , 1993, Cell.

[46]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[47]  G. Edelman Neural Darwinism: The Theory Of Neuronal Group Selection , 1989 .

[48]  F. Freemon The Synaptic Organization of the Brain , 1980 .

[49]  J. Changeux,et al.  A theory of the epigenesis of neuronal networks by selective stabilization of synapses. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[50]  T. Powell,et al.  The mitral and short axon cells of the olfactory bulb. , 1970, Journal of cell science.

[51]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[52]  V. Mountcastle,et al.  Response properties of neurons of cat's somatic sensory cortex to peripheral stimuli. , 1957, Journal of neurophysiology.

[53]  S. A. Talbot,et al.  Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination , 1941 .

[54]  T. Curran,et al.  Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. , 1991, Annual review of neuroscience.

[55]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[56]  R. Doty,et al.  Electrical stimulation of the brain in behavioral context. , 1969, Annual review of psychology.

[57]  C. Woolsey,et al.  OBSERVATIONS ON CORTICAL SOMATIC SENSORY MECHANISMS OF CAT AND MONKEY , 1941 .