On nonlinear Schrödinger equations in exterior domains

Abstract We prove a local smoothing effect and Strichartz type estimates for the Schrodinger equation on the exterior of a non-trapping obstacle. As a consequence we deduce global existence and uniqueness results for the Cauchy problem for nonlinear Schrodinger equations in these particular geometries.

[1]  T. Ogawa,et al.  Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem , 1991 .

[2]  I. Segal Non-Linear Semi-Groups , 1963 .

[3]  J. Saut,et al.  Local smoothing properties of Schrödinger equations , 1989 .

[4]  On smooth solutions to the initial-boundary value problem for the nonlinear Schro¨dinger equation in two space dimensions , 1989 .

[5]  S. Doi Smoothing effects of Schrödinger evolution groups on Riemannian manifolds , 1996 .

[6]  B. Vainberg,et al.  Asymptotic methods in equations of mathematical physics , 1989 .

[7]  Y. Tsutsumi Global solutions of the nonlinear schrödinger equation in exterior domains , 1983 .

[8]  Luis Vega Schrödinger equations: pointwise convergence to the initial data , 1988 .

[9]  Tosio Kato,et al.  On nonlinear Schrödinger equations , 1987 .

[10]  N. Burq Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel , 1998 .

[11]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[12]  Thierry Gallouët,et al.  Nonlinear Schrödinger evolution equations , 1980 .

[13]  Jean Bourgain,et al.  Global Solutions of Nonlinear Schrodinger Equations , 1999 .

[14]  S. Klainerman,et al.  Decay and regularity for the schrödinger equation , 1992 .

[15]  M. Tsutsumi On global solutions to the initial–boundary value problem for the nonlinear Schrödinger equations in exterior domains , 1991 .

[16]  A. Kiselev,et al.  Maximal Functions Associated to Filtrations , 2001 .

[17]  Nicolas Burq,et al.  Semi-classical estimates for the resolvent in nontrapping geometries , 2002 .

[18]  P. Gérard,et al.  The Cauchy Problem for the Nonlinear Schrödinger Equation on a Compact Manifold , 2003 .

[19]  Nicolas Burq,et al.  Contrôlabilité exacte des ondes dans des ouverts peu réguliers , 1997 .

[20]  D. Tataru,et al.  STRICHARTZ ESTIMATES FOR A SCHRÖDINGER OPERATOR WITH NONSMOOTH COEFFICIENTS , 2002 .

[21]  P. Gérard,et al.  Two singular dynamics of the nonlinear Schrödinger equation on a plane domain , 2003 .

[22]  Richard B. Melrose,et al.  Singularities of boundary value problems. I , 1978 .

[23]  Peter Constantin,et al.  Local smoothing properties of dispersive equations , 1988 .

[24]  Michael E. Taylor,et al.  Partial Differential Equations , 1996 .

[25]  V. Edwards Scattering Theory , 1973, Nature.

[26]  P. Gérard,et al.  Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds , 2004 .

[27]  O. Kavian,et al.  A remark on the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations , 1987 .

[28]  P. Sjölin,et al.  Regularity of solutions to the Schrödinger equation , 1987 .

[29]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[30]  Hart F. Smith,et al.  On the critical semilinear wave equation outside convex obstacles , 1995 .