Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère equation

[1]  Yanyan Li,et al.  Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations , 2016, Calculus of Variations and Partial Differential Equations.

[2]  Jiguang Bao,et al.  Monge–Ampère equation on exterior domains , 2013, 1304.2415.

[3]  Yanyan Li Local gradient estimates of solutions to some conformally invariant fully nonlinear equations , 2006, math/0605559.

[4]  YanYan Li,et al.  On some conformally invariant fully nonlinear equations, II. Liouville, Harnack and Yamabe , 2004, math/0403442.

[5]  Yanyan Li,et al.  An extension to a theorem of Jörgens, Calabi, and Pogorelov , 2003 .

[6]  Yanyan Li,et al.  On some conformally invariant fully nonlinear equations , 2003, math/0304393.

[7]  J. Jost,et al.  Some Aspects of the global Geometry of Entire Space-Like Submanifolds , 2001, math/0110239.

[8]  A. Martínez,et al.  The Space of Parabolic Affine Sphereswith Fixed Compact Boundary , 2000 .

[9]  A. Martínez,et al.  An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres , 1999 .

[10]  S. Yau,et al.  Complete affine hypersurfaces. Part I. The completeness of affine metrics , 1986 .

[11]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[12]  A. V. Pogorelov On the improper convex affine hyperspheres , 1972 .

[13]  K. Jörgens Über die Lösungen der Differentialgleichungrt−s2=1 , 1954 .

[14]  Luis A. Caffarelli,et al.  A Liouville theorem for solutions of the Monge–Ampère equation with periodic data , 2004 .

[15]  Eugenio Calabi,et al.  Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. , 1958 .