Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère equation
暂无分享,去创建一个
[1] Yanyan Li,et al. Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations , 2016, Calculus of Variations and Partial Differential Equations.
[2] Jiguang Bao,et al. Monge–Ampère equation on exterior domains , 2013, 1304.2415.
[3] Yanyan Li. Local gradient estimates of solutions to some conformally invariant fully nonlinear equations , 2006, math/0605559.
[4] YanYan Li,et al. On some conformally invariant fully nonlinear equations, II. Liouville, Harnack and Yamabe , 2004, math/0403442.
[5] Yanyan Li,et al. An extension to a theorem of Jörgens, Calabi, and Pogorelov , 2003 .
[6] Yanyan Li,et al. On some conformally invariant fully nonlinear equations , 2003, math/0304393.
[7] J. Jost,et al. Some Aspects of the global Geometry of Entire Space-Like Submanifolds , 2001, math/0110239.
[8] A. Martínez,et al. The Space of Parabolic Affine Sphereswith Fixed Compact Boundary , 2000 .
[9] A. Martínez,et al. An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres , 1999 .
[10] S. Yau,et al. Complete affine hypersurfaces. Part I. The completeness of affine metrics , 1986 .
[11] Luis A. Caffarelli,et al. The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .
[12] A. V. Pogorelov. On the improper convex affine hyperspheres , 1972 .
[13] K. Jörgens. Über die Lösungen der Differentialgleichungrt−s2=1 , 1954 .
[14] Luis A. Caffarelli,et al. A Liouville theorem for solutions of the Monge–Ampère equation with periodic data , 2004 .
[15] Eugenio Calabi,et al. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. , 1958 .