molecular ions in helium glow discharges: the effect of bulk electron temperature

molecular ions may be present in a concentration comparable to that of atomic ions in dc helium glow discharges operated at medium pressures (several tens of millibars). We use hybrid discharge simulations to study in a self-consistent way the creation, transport and loss processes of both atomic and molecular ionic species and the role of molecular ions in the self-sustainment of the discharges. In the pressure range where recombination processes are significant, the temperature of the cold (bulk, trapped) electrons is expected to strongly influence the discharge properties. In order to clarify these effects we investigate the influence of cold electron temperature (used as an input parameter) on the results of the simulations based on a hybrid model.

[1]  G. Gamez,et al.  Fundamental studies on a planar-cathode direct current glow discharge. Part I: characterization via laser scattering techniques , 2004 .

[2]  C. Theodosiou,et al.  Determination of electric field-dependent effective secondary emission coefficients for He/Xe ions on brass , 2004 .

[3]  J. Mullen,et al.  The role of molecular rare gas ions in plasmas operated at atmospheric pressure , 2003 .

[4]  A. Bogaerts,et al.  Role of the fast Ar atoms, Ar+ ions, and metastable Ar atoms in a hollow cathode glow discharge: Study by a hybrid model , 2003 .

[5]  J. Mullen,et al.  On the differences between ionizing helium and argon plasmas at atmospheric pressure , 2003 .

[6]  K. Kutasi,et al.  Au-II 282 nm segmented hollow-cathode laser-parametric studies and modeling , 2002 .

[7]  K. Kutasi,et al.  Axial emission profiles and apparent secondary electron yield in abnormal glow discharges in argon , 2002 .

[8]  A. Bogaerts,et al.  The ion- and atom-induced secondary electron emission yield: numerical study for the effect of clean and dirty cathode surfaces , 2002 .

[9]  P. Hartmann,et al.  Self-consistent modelling of helium discharges: investigation of the role of He2+ ions , 2001 .

[10]  Z. Donkó Apparent secondary-electron emission coefficient and the voltage-current characteristics of argon glow discharges. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  H. Schreuders,et al.  Modeling of the microdischarges in plasma addressed liquid crystal displays , 2000 .

[12]  J. Margot,et al.  Numerical Modeling of a He–N2 Capillary Surface Wave Discharge at Atmospheric Pressure , 2000 .

[13]  K. Kutasi,et al.  Hybrid model of a plane-parallel hollow-cathode discharge , 2000 .

[14]  J. Margot,et al.  Calculated Plasma Parameters and Excitation Spectra of High-Pressure Helium Discharges , 1999 .

[15]  A. Phelps,et al.  Cold-cathode discharges and breakdown in argon: surface and gas phase production of secondary electrons , 1999 .

[16]  A. Kudryavtsev,et al.  Energy balance of the bulk, Maxwellian electrons in spatially inhomogeneous negative-glow plasmas , 1998 .

[17]  Z. Donkó Hybrid model of a rectangular hollow cathode discharge , 1998 .

[18]  J. Boeuf,et al.  Field reversal in the negative glow of a DC glow discharge , 1995 .

[19]  A. Bogaerts,et al.  Plasma diagnostics of an analytical Grimm-type glow discharge in argon and in neon: Langmuir probe and optical emission spectrometry measurements , 1995 .

[20]  Fiala,et al.  Two-dimensional, hybrid model of low-pressure glow discharges. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Hill Pc,et al.  Reaction processes in a He2+( 2 Pi u-->A 2 Sigma g+) flash lamp. , 1993 .

[22]  K. R. Hess,et al.  Optical and Langmuir Probe Investigations of Excitation Temperatures in a Low-Pressure Glow Discharge with Variations in Discharge Gas Identity , 1993 .

[23]  L. Alves,et al.  A collisional-radiative model for microwave discharges in helium at low and intermediate pressures , 1992 .

[24]  T. Kubota,et al.  Improved RF-driven probe method for RF discharge plasma diagnostics , 1991 .

[25]  J. Boeuf,et al.  Pseudospark discharges via computer simulation , 1991 .

[26]  Graves,et al.  Self-consistent model of a direct-current glow discharge: Treatment of fast electrons. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[27]  J. Lawler,et al.  Electron temperature and density diagnostics in a helium glow discharge. , 1989, Physical review letters.

[28]  Doughty,et al.  Current balance at the surface of a cold cathode. , 1987, Physical review letters.

[29]  S Teii,et al.  Molecular ion and metastable atom formations and their effects on the electron temperature in medium-pressure rare-gas positive-column plasmas , 1980 .

[30]  D. Rothe,et al.  High‐power N2+ laser pumped by charge transfer in a high‐pressure pulsed glow discharge , 1977 .

[31]  P. Monchicourt,et al.  High-pressure helium afterglow at room temperature , 1976 .

[32]  David A. Owen,et al.  Matrix Pade approximants and the Bethe-Salpeter equation of the N-N interaction , 1976 .

[33]  C. Collins,et al.  A nitrogen ion laser pumped by charge transfer , 1974 .

[34]  H. Griem Validity of Local Thermal Equilibrium in Plasma Spectroscopy , 1963 .

[35]  A. Phelps Role of Molecular Ions, Metastable Molecules, and Resonance Radiation in the Breakdown of Rare Gases , 1960 .

[36]  J. P. Molnar,et al.  MASS SPECTROMETRIC STUDIES OF MOLECULAR IONS IN THE NOBLE GASES , 1951 .

[37]  H. Furth,et al.  Plasma diagnostic techniques , 1965 .