Probabilistic Analysis of the Capacitated Transportation Problem

We consider the capacitated transportation problem defined by sets of supplies a i , i (in) I , demands b j , j (in) J , and capacities c ij , i (in) I , j (in) J . Assuming that the capacities are random variables, we prove asymptotic conditions on the supplies and demands which assure that a feasible solution exists almost surely. The proof is constructive and supplies an algorithm whose running time is O (| I | | J |). We then apply the results to the maximum flow problem.

[1]  J. Picard,et al.  Selected Applications of Minimum Cuts in Networks , 1982 .

[2]  Alan M. Frieze,et al.  The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..

[3]  H. Frank,et al.  Probabilistic Flows Through a Communication Network , 1965 .

[4]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[5]  T.I. Fenner,et al.  On the existence of Hamiltonian cycles in a class of random graphs , 1983, Discret. Math..

[6]  Geoffrey Grimmett,et al.  The maximal flow through a directed graph with random capacities , 1982 .

[7]  S. L. Hakimi,et al.  Parametric synthesis of statistical communication nets , 1968 .

[8]  Refael Hassin,et al.  On Shortest Paths in Graphs with Random Weights , 1985, Math. Oper. Res..

[9]  G. Grimmett,et al.  Flow in networks with random capacities , 1982 .

[10]  Jan Karel Lenstra,et al.  Probabilistic analysis of combinatorial algorithms: an annotated bibliography , 1984 .

[11]  N. Karmarkar Probabilistic analysis of some bin-packing problems , 1982, FOCS 1982.

[12]  Carlo Vercellis,et al.  A probabilistic analysis of the set covering problem , 1984, Ann. Oper. Res..

[13]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[14]  E. Jamoulle,et al.  Transportation networks with random arc capacities , 1972 .

[15]  S. L. Hakimi,et al.  On the optimum synthesis of statistical communication Nets-Pseudo parametric techniques , 1967 .

[16]  Ivan T. Frisch,et al.  Communication, transmission, and transportation networks , 1971 .

[17]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[18]  E. Upfal,et al.  On factors in random graphs , 1981 .

[19]  D. Gale A theorem on flows in networks , 1957 .

[20]  Alan M. Frieze,et al.  On the value of a random minimum spanning tree problem , 1985, Discret. Appl. Math..

[21]  Alexander H. G. Rinnooy Kan,et al.  Bounds and Heuristics for Capacitated Routing Problems , 1985, Math. Oper. Res..