Atypical one-carbon metabolism of an acetogenic and hydrogenogenic Moorella thermoacetica strain

A thermophilic spore-forming bacterium (strain AMP) was isolated from a thermophilic methanogenic bioreactor that was fed with cobalt-deprived synthetic medium containing methanol as substrate. 16S rRNA gene analysis revealed that strain AMP was closely related to the acetogenic bacterium Moorella thermoacetica DSM 521T (98.3% sequence similarity). DNA–DNA hybridization showed 75.2 ± 4.7% similarity to M. thermoacetica DSM 521T, suggesting that strain AMP is a M. thermoacetica strain. Strain AMP has a unique one-carbon metabolism compared to other Moorella species. In media without cobalt growth of strain AMP on methanol was only sustained in coculture with a hydrogen-consuming methanogen, while in media with cobalt it grew acetogenically in the absence of the methanogen. Addition of thiosulfate led to sulfide formation and less acetate formation. Growth of strain AMP with CO resulted in the formation of hydrogen as the main product, while other CO-utilizing Moorella strains produce acetate as product. Formate supported growth only in the presence of thiosulfate or in coculture with the methanogen. Strain AMP did not grow with H2/CO2, unlike M. thermoacetica (DSM 521T). The lack of growth with H2/CO2 likely is due to the absence of cytochrome b in strain AMP.

[1]  J. Scholten,et al.  The effect of sulfate and nitrate on methane formation in a freshwater sediment , 1995, Antonie van Leeuwenhoek.

[2]  Alfons J. M. Stams,et al.  Syntrophic Growth on Formate: a New Microbial Niche in Anoxic Environments , 2008, Applied and Environmental Microbiology.

[3]  H. G. Trüper,et al.  Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii , 2005, Antonie van Leeuwenhoek.

[4]  R. Kerby,et al.  CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Lane 16S/23S rRNA sequencing , 1991 .

[6]  A. Stams,et al.  Microbial CO Conversions with Applications in Synthesis Gas Purification and Bio-Desulfurization , 2006, Critical reviews in biotechnology.

[7]  L. Ljungdahl,et al.  The Acetyl-CoA Pathway and the Chemiosmotic Generation of ATP during Acetogenesis , 1994 .

[8]  E. Bonch‐Osmolovskaya,et al.  Carboxydocella sporoproducens sp. nov., a novel anaerobic CO-utilizing/H2-producing thermophilic bacterium from a Kamchatka hot spring. , 2006, International journal of systematic and evolutionary microbiology.

[9]  R. Kellum,et al.  Effects of cultivation gas phase on hydrogenase of the acetogen Clostridium thermoaceticum , 1984, Journal of bacteriology.

[10]  E. Stackebrandt,et al.  Nucleic acid techniques in bacterial systematics , 1991 .

[11]  H. Drake,et al.  Old Acetogens, New Light , 2008, Annals of the New York Academy of Sciences.

[12]  G. Gottschalk,et al.  The Sodium Ion Cycle in Acetogenic and Methanogenic Bacteria: Generation and Utilization of a Primary Electrochemical Sodium Ion Gradient , 1994 .

[13]  J. Wiegel,et al.  Isolation and characterization of the homoacetogenic thermophilic bacterium Moorella glycerini sp. nov. , 1997, International journal of systematic bacteriology.

[14]  J. Jongejan,et al.  PQQ and Quinoproteins , 1989, Springer Netherlands.

[15]  G. Vogels,et al.  Purification and Properties of an Enzyme Involved in the ATP-dependent Activation of the Methanol:2-Mercaptoethanesulfonic Acid Methyltransferase Reaction in Methanosarcina barkeri* , 1996, The Journal of Biological Chemistry.

[16]  A. Stams,et al.  (Per)chlorate Reduction by the Thermophilic Bacterium Moorella perchloratireducens sp. nov., Isolated from Underground Gas Storage , 2007, Applied and Environmental Microbiology.

[17]  T. Sokolova,et al.  Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing Thermophilic Anaerobic Bacterium from Hydrothermal Environments of Kunashir Island , 1991 .

[18]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[19]  M. Blaut,et al.  Isolation of a cytochrome-deficient mutant strain of Sporomusa sphaeroides not capable of oxidizing methyl groups , 1993, Journal of bacteriology.

[20]  H. Drake,et al.  Development ofa Minimally Defined MediumfortheAcetogen Clostridium thermoaceticum , 1984 .

[21]  F. Robb,et al.  Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. , 2001, International journal of systematic and evolutionary microbiology.

[22]  D. M. Ivey,et al.  Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes , 1987, Journal of bacteriology.

[23]  P. Cashion,et al.  A rapid method for the base ratio determination of bacterial DNA. , 1977, Analytical biochemistry.

[24]  A. Stams,et al.  Novel Physiological Features of Carboxydothermus hydrogenoformans and Thermoterrabacterium ferrireducens , 2004, Applied and Environmental Microbiology.

[25]  G. Gottschalk,et al.  Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide , 2005, Current Microbiology.

[26]  F. Robb,et al.  Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. , 2004, International journal of systematic and evolutionary microbiology.

[27]  E. Stupperich,et al.  Corrinoid-Dependent Methyl Transfer Reactions Are Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by Sporomusa ovata , 1993, Applied and environmental microbiology.

[28]  W. Whitman,et al.  Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. , 1989, Journal of chromatography.

[29]  E. Bonch‐Osmolovskaya,et al.  Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. , 2002, International journal of systematic and evolutionary microbiology.

[30]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[31]  M. Savage,et al.  Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium , 1986, Journal of bacteriology.

[32]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[33]  A. Stams,et al.  Methanomethylovorans thermophila sp. nov., a thermophilic, methylotrophic methanogen from an anaerobic reactor fed with methanol. , 2005, International journal of systematic and evolutionary microbiology.

[34]  Lawrence G. Wayne,et al.  International Committee on Systematic Bacteriology: Announcement of the Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics , 1988 .

[35]  P. L. Paulo,et al.  Start-up of a thermophilic methanol-fed UASB reactor: change in sludge characteristics. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[36]  P. Gerhardt,et al.  Methods for general and molecular bacteriology , 1994 .

[37]  P. Lawson,et al.  The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. , 1994, International journal of systematic bacteriology.

[38]  A. Stams,et al.  Effect of cobalt on the anaerobic thermophilic conversion of methanol , 2004, Biotechnology and bioengineering.

[39]  G. Ritter,et al.  A New Type of Glucose Fermentation by Clostridium thermoaceticum , 1942, Journal of bacteriology.

[40]  H. Drake,et al.  Sporomusa silvacetica sp, nov., an acetogenic bacterium isolated from aggregated forest soil. , 1997, International journal of systematic bacteriology.

[41]  L. Ljungdahl,et al.  PQQ-Dependent Methanol Dehydrogenase from Clostridium Thermoautotrophicum , 1989 .

[42]  Douglas R Martin,et al.  Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacteriumClostridium thermoaceticum , 1983, Current Microbiology.

[43]  Harold L Drake,et al.  Physiology of the thermophilic acetogen Moorella thermoacetica. , 2004, Research in microbiology.

[44]  David L. Wheeler,et al.  GenBank: update , 2004, Nucleic Acids Res..

[45]  K. Komagata,et al.  Determination of DNA base composition by reversed-phase high-performance liquid chromatography , 1984 .

[46]  J. Ley,et al.  The quantitative measurement of DNA hybridization from renaturation rates. , 1970, European journal of biochemistry.

[47]  R. Hedderich,et al.  Purification and catalytic properties of a CO-oxidizing:H2-evolving enzyme complex from Carboxydothermus hydrogenoformans. , 2002, European journal of biochemistry.

[48]  A. Stams,et al.  Growth of Syntrophic Propionate-Oxidizing Bacteria with Fumarate in the Absence of Methanogenic Bacteria , 1993, Applied and environmental microbiology.

[49]  E. Zoetendal,et al.  Temperature Gradient Gel Electrophoresis Analysis of 16S rRNA from Human Fecal Samples Reveals Stable and Host-Specific Communities of Active Bacteria , 1998, Applied and Environmental Microbiology.

[50]  H. Drake,et al.  Ecological consequences of the phylogenetic and physiological diversities of acetogens , 2002, Antonie van Leeuwenhoek.

[51]  Paul Richardson,et al.  The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). , 2008, Environmental microbiology.

[52]  J. McFadden,et al.  Simple enzymic method for isolation of DNA from diverse bacteria , 1989 .

[53]  H. Drake,et al.  Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum , 1996, Journal of bacteriology.

[54]  Alfons J. M. Stams,et al.  Methanol utilization by a novel thermophilic homoacetogenic bacterium, Moorella mulderi sp. nov., isolated from a bioreactor , 2003, Archives of Microbiology.