How accurate is the streamline-diffusion FEM inside characteristic (boundary and interior) layers?

Abstract Two model two-dimensional singularly perturbed convection–diffusion problems are considered whose solutions may have characteristic boundary and interior layers. They are solved numerically by the streamline-diffusion finite element method using piecewise linear or bilinear elements. We investigate how accurate the computed solution is in characteristic-layer regions if anisotropic layer-adapted meshes are used. It is shown that the streamline-diffusion formulation may, in the maximum norm, imply only first-order accuracy in characteristic-layer regions. Numerical experiments are presented that support our theoretical predictions.

[1]  Rolf Rannacher,et al.  Pointwise superconvergence of the streamline diffusion finite-element method , 1996 .

[2]  Koichi Niijima,et al.  Pointwise error estimates for a streamline diffusion finite element scheme , 1989 .

[3]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[4]  Shagi-Di Shih,et al.  Asymptotic anaylsis of a singular perturbation problem , 1987 .

[5]  Lutz Tobiska,et al.  Numerical Methods for Singularly Perturbed Differential Equations , 1996 .

[6]  Guohui Zhou,et al.  How accurate is the streamline diffusion finite element method? , 1997, Math. Comput..

[7]  Torsten Linß,et al.  The sdfem on Shishkin meshes for linear convection-diffusion problems , 2001, Numerische Mathematik.

[8]  JohnM . Miller,et al.  Robust Computational Techniques for Boundary Layers , 2000 .

[9]  A. H. Schatz,et al.  Crosswind Smear and Pointwise Errors in Streamline Diffusion Finite Element Methods , 1987 .

[10]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[11]  Eugene O'Riordan,et al.  Numerical Methods for Singular Perturbation Problems , 1996 .

[12]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[13]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[14]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[15]  Torsten Linß Anisotropic meshes and streamline-diffusion stabilization for convection-diffusion problems , 2005 .